cho A=(1+1/2+1/3+...+1/97+1/98)2014^2015.chứng minh A chia hết cho 11.Giúp mình với mình cần gấp
cho A=(1+1/2+1/3+...+1/97+1/98)2014^2015.chứng minh A chia hết cho 11.
Cho A = (1+1/2+1/3+1/4+...+1/97+1/98). 20142015. Chứng tỏ A chia hết cho 11
Cho A=(1/2+1/3+...+1/97+1/98).2014^2015.Chung to A chia het cho 11.ai giai som nhat minh tick cho
Chứng minh rằng A= 1- 3 +3²-3³+...+3^98-3^99 chia hết cho 4
Giúp mình với nhé mình cần gấp
Giải
A=(1+3^1)+(3^2+3^3)+...+(3^98+3^99)
A=4.1+3^2.(1+3^1)+...3^98.(1+3^1)
A=4.1+3^2.4+...3^98.4
A=4.(1+3^2+3^4+...+3^98)
=> A chia hết cho 4
Chứng minh A chia hết cho 4 :
A= \(3^{99}-3^{98}+3^{97}-3^{96}+......+3^3-3^2+3=1\) 1
Bài này mình cũng đang cần gấp !!!!!!!!! Mong mọi người giúp . Cảm ơn trước ạ !
Bỏ cái số 1 bé : "1" đằng sau cái số 1 lớn nhé . Câu hỏi chỉ có : \(A=3^{99}-3^{98}+3^{97}-3^{96}+.....+3^3-3^2+1=1\)
có sai đầu bài ko vậy kết quả ghi bằng 1 rồi mà
A = 119 +118 +117 +... +11+1. Chứng minh rằng A chia hết cho 5
B = 2 + 22 + 23 +... + 260 . Chứng minh rằng B chia hết cho 7 và 15
C = 3 + 33 + 35 +... + 31991 . Chứng minh rằng C chia hết cho 13 và 41
mình cần gấp giúp mình với
giúp mình với mình chuẩn bị phải nộp bài rồi T~T
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Cho A=(1+1/2+1/3+...+1/97+1/98).2014^5 .CMR a chia hết cho 11
chứng minh rằng
a, 942^60-351^37 chia hết cho 5
b, 99^5-98^4+97^3-96^2 chia hết cho 2 và 5
các bạn giúp mình làm bài này với mình đang cần gấp
Bài 1:
Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)
\(=\dfrac{11}{27}\)
Câu 2:
B=1+1/2+1/3+....+1/2010
=(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)
= 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006
=2011.(1/2010+.....1/1005.1006)
Vậy B có tử số chia hết cho 2011 (đpcm).
Câu 3:
\(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)
Mà
\(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)