tìm x,y biết x/2=y/3 và 4x/3y=-2
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Tìm x, y biết:
a, x+y=15 và 5x=2y
b,x-y=10 và x/y=3/7
c,2x-3y=15 và 4x=3y
d,x+2y=1 và x+3y/x-2y=2/3
a) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) . Đến đấy áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}.2=\frac{30}{7}\) ; \(\Rightarrow y=\frac{15}{7}.5=\frac{75}{7}\)
b) \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{3}=\frac{y}{7}\). Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-3}\)
\(\Rightarrow x=-10\) ; \(y=-\frac{70}{3}\)
c) Sai đề vì 2x = 3y => 2x - 3y = 0 mà giả thiết lại đưa ra 2x - 3y = 15 => mâu thuẫn
d) \(\frac{x+3y}{x-2y}=\frac{2}{3}\Leftrightarrow3\left(x+3y\right)=2\left(x-2y\right)\)
\(\Leftrightarrow3x+9y=2x-4y\Leftrightarrow x=-13y\)
Thay x = -13y vào x+2y = 1 được :
x + 2y = 1 => (-13y) + 2y = 1 => -11y = 1 => y = -1/11
=> x = -1/11 . -13 = 13/11
Câu b) mình có nhầm xíu : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-4}=-\frac{5}{2}\)
\(\Rightarrow x=-\frac{15}{2};y=-\frac{35}{2}\)
Giúp mình với??:(
Tìm x; y; z biết :
1) x/2 = y/3 ; y/4 = z/5 và x – y + z = 10
2) 4x = 3y ; 7y = 5z và 2x + 3y - z= 136
3) x-3/5 = y-5/1 = z+3/7 và 3x + 5y - 7z = 100
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
tìm x,y:
a)x/5-y/2 và 3x-2y=44
b)x/-2=y/-3 và 4x-3y
c)4x=3y và x-y=11
a, x/5-y/2
=> 3x/15=2y/4=3x-2y/15-4=44/11=4
+, x/5=4 => x=20
+, y/2=4 => y=8
c, 4x=3y
=> x/3=y/4=x-y=3-4=11/-1=-11
+, x/3=-11 => x=-33
+, y/4=-11 => y=-44
4x = 3y nên \(\frac{x}{3}\)=\(\frac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{x-y}{3-4}\)=\(\frac{11}{-1}\)= -11
+) \(\frac{x}{3}\)= -11
x = -11x3=-33
+) \(\frac{y}{4}\)= -11
y = -11x4 =-44
Vậy x = -33 ; y = -44
Tìm các số x, y biết
x=y/2=z/3 và 4x-3y+2z=36
x-1/2=y-2/3=z-3/4 và x-2y+3z=14
Tìm x,y,z biết :
x/1=y/2=z/3 và 4x -3y + 2z= 36
Theo tinh chat ti so bang nhau , ta co
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x.4}{1.4}=\frac{y.3}{2.3}=\frac{4.x}{4}=\frac{3.y}{6}=\frac{2.z}{6}=\frac{4.x-3.y+2.z}{4-6+6}=\frac{36}{4}=9\)
Nen : 1/x = 9 => x = 9
2/y = 9 => y = 18
3/z = 9 => z = 27
Ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}-\frac{3y}{6}+\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
Do đó : \(\hept{\begin{cases}\frac{x}{1}=9\\\frac{y}{2}=9\\\frac{z}{3}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=18\\z=27\end{cases}}\)
Vậy \(x;y;z=9;18;27\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4.1-3.2+2.3}=\frac{36}{4}=9\)
\(\hept{\begin{cases}\frac{x}{1}=9\Rightarrow x=9.1=9\\\frac{y}{2}=9\Rightarrow y=9.2=18\\\frac{z}{3}=9\Rightarrow z=9.3=27\end{cases}}\)
Vậy \(x=9;y=18;z=27\)
1) Tìm x,y,z biết
x/3=y/4=z/5 và 2x2+2y2 -3z2=-100
2) Giá trị của y, biết :
2/3x=1/2y=2/z và 3x+2y+z=1
3) Tìm x, y, z, biết
2x=y, 3y=2x và 4x-3y+2z=36
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
Tìm x, y biết: 4x - 3/3 = 3y + 1/7 = 4x + 3y -2/ 5y
\(\frac{4x-3}{3}=\frac{3y+1}{7}=\frac{4x+3y-2}{5y}\)
\(=\frac{4x-3+3y+1-\left(4x+3y-2\right)}{3+7-5y}\)
\(=\frac{4x-3+3y+1-4x-3y+2}{10-5y}\)
\(=\frac{\left(4x-4x\right)+3y-3y-3+1+2}{10-5y}=0\)
\(\Rightarrow\hept{\begin{cases}4x-3=0\Leftrightarrow x=\frac{3}{4}\\3y+1=0\Leftrightarrow y=-\frac{1}{3}\end{cases}}\)
Vậy \(x=\frac{3}{4};y=-\frac{1}{3}\).
Câu trả lời đúng là :
x = 3/4
y = -1/3
Đáp số : ...
Tìm x, y biết
\(\frac{x-1}{2}=\frac{y-2}{3}\) và 4x-3y=5
Theo đề bài ta có: \(4x-3y=5\)
\(\frac{x-1}{2}=\frac{y-2}{3}\Rightarrow\frac{4x-4}{8}=\frac{3y-6}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x-4}{8}=\frac{3y-6}{9}=\frac{4x-4-3y+6}{-1}=\frac{\left(4x-3y\right)+\left(-4+6\right)}{-1}=\frac{5+2}{-1}=-7\)
\(\Rightarrow\begin{cases}\frac{x-1}{2}=-7\rightarrow x=\left(-7\right)\cdot2+1=-13\\\frac{y-2}{3}=-7\rightarrow y=\left(-7\right)\cdot3+2=-19\end{cases}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{4\left(x-1\right)}{2.4}=\frac{3.\left(y-2\right)}{3.3}=\frac{4x-4}{8}=\frac{3y-6}{9}=\frac{4x-4-3y+6}{8-9}=\frac{\left(4x-3y\right)-\left(4-6\right)}{-1}\)
\(=\frac{5-\left(-2\right)}{-1}=\frac{7}{-1}=-7\)
+) \(\frac{x-1}{2}=-7\Rightarrow x-1=-14\Rightarrow x=-13\)
+) \(\frac{y-2}{3}=-7\Rightarrow y-2=-21\Rightarrow y=-19\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-13;-19\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{4x-4}{8}\) = \(\frac{3y-6}{9}\) = \(\frac{4x-4-\left(3y-6\right)}{8-9}\) = \(\frac{4x-4-3y+6}{-1}\)
= \(\frac{4x-3y+\left(-4+6\right)}{-1}\) = \(\frac{5+2}{-1}\) = \(\frac{7}{-1}\) = -7
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x-1=-14\\y-2=-21\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-13\\y=-19\end{array}\right.\)
Vậy x = -13 ; y = -19