Chứng tỏ rằng số abcd chia hết cho 101 thì ab - cd = 0 và ngược lại
Mình mới vào nên chưa biết nhiều .Giúp mình nha , thanks
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết 99 thì ab + cd chia hết cho 99 và ngược lại
Bài 2 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Chứng tỏ rằng: Nếu abcd chia hết cho 101 thì ab - cd=0 và ngược lại
abcd chia hết cho 101 => ab = cd => ab - cd = 0
abcd=100ab+cd=101ab-ab=cd
suy ra abcd=101-(ab-cd)
mik gợi ý cho từng đó nha hi hi
Chứng tỏ rằng: nếu số abcd chia hết cho 101 thì ab-cd chia hết cho 101 và ngược lại.
Mình làm đúng đó
Đảm bảo 100%
Ủng hộ nha
abcd = ab x 100 + cd = ab x 101 - ab + cd
Vì abcd và ab x 101 chia hết cho 101 nên - ab + cd chia hết cho 101 \(\Rightarrow\)- ( ab - cd ) chia hết cho 101 \(\Rightarrow\)ab - cd chia hết cho 101 ( ĐPCM )
Ngược lại, ab - cd chia hết cho 101 nên - ab + cd chia hết cho 101. Mà ab x 101 chia hết nên abcd chia hết cho 101 ( ĐPCM )
Chứng tỏ rằng: Nếu abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
abcd chia hết cho 101
=>ab=cd
=>ab-cd=0
Chứng tỏ rằng:nếu số abcd chia hết cho 101 thì ab-cd chia hết cho 101 và ngược lại
abcd chia hết cho 101
<=> abcd = 101k ﴾k ≥ 10 ; k ∈ N﴿
<=> ab = cd
=> ab ‐ cd = 0 điều ngược lại là ab ‐ cd = 0 thì abcd chia hết cho 101 cũng đúng.
=> điều phải chứng minh
Chứng tỏ rằng:nếu số abcd chia hết cho 101 thì ab-cd chia hết cho 101 và ngược lại
abcd = ab x 100 + cd = ab x 101 - ab + cd
Vì abcd và ab x 101 chia hết cho 101 nên - ab + cd chia hết cho 101 => - (ab - cd) chia hết cho 101 => ab - cd chia hết cho 101
Ngược lại, ab - cd chia hết cho 101 nên -ab + cd chia hết cho 101 . Mà ab x 101 chia hết cho 101 nên abcd chia hết cho 101
Vậy...
Chứng minh rằng: Nếu abcd chia hết cho 101 thì ab - cd=0 và ngược lại
nếu abcd chia hết cho 101
=>abcd có dạng 101.mn (m,n là số tự nhiên; m khác 0)
mà 101.mn = (100+1).mn = mn00 + mn = mnmn
vậy abcd có dạng mnmn
từ đó ta có : ab-cd = mn-mn = 0
cd-ab = mn-mn = 0
chứng tỏ rằng
nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Chứng tỏ rằng :
abcd chia hết cho 101 thì ab-cd=0
nếu ab-cd=0 thì abcd chia hết cho 101
\(abcd\) chia hết cho 101
<=> abcd = 101k (k \(\ge10\) ; k \(\in\) N)
<=> ab = cd
=> ab - cd = 0
điều ngược lại là ab - cd = 0 thì abcd chia hết cho 101 cũng đúng.
=> điều phải chứng minh
Chứng tỏ rằng : Nếu số abcd chia hết cho 99 thì ab +cd chia hết cho 99 và ngược lại.
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM