chứng minh rằng
a, A = 2n+11...1 chia hết cho 3 [biết 11...1 có n chữ số
Chứng tỏ rằng
a) 2n + 11....1 chia hết cho 3 ( có n chữ số 1)
b) 8n + 11....1 chia hết cho 9 ( có n chữ số 1 )
a) Ta co:
2n + 111....1 ( n CS 1 )
= ( 3n - n ) + 111....1 ( n CS 1 )
= 3n + ( 111....1 - n ) ( n CS 1 )
Tổng các chữ so cua so 111... 1 ( n CS 1 ) la :
1 + 1 + 1 + .........+ 1 = n ( n so 1 )
suy ra, Số 111...1 và n có cùng số dư khi chia cho 3 ( n CS 1 )
suy ra : ( 111...1 - n ) ⋮3 ( n CS 1 )
Ma (3n) ⋮ 3 với mọi n ∈N
suy ra: [ 3n + ( 111...1 - n ) ] ⋮ 3 ( n CS 1 )
Vay voi moi số tự nhiên n # 0 thì ta co:
2n + 111...1 chia hết cho 3 ( n CS 1 )
1. Với mọi a,b,n thuộc N thì B = ( 10n - 1 ) .a + (11....1 -n).b chia hết cho 9 ( có n chữ số 1 )
2. Chứng minh rằng:
a) 10n- 36n -1 chia hết cho 27 với n thuộc N; n nhỏ hơn hoặc bằng 2
b) số 11...1 chia hết cho 27 ( có 27 chữ số 1 )
3. cho a - 5b chia hết cho 17 ( a,b thuộc N ). Chứng minh rằng 10a+b chia hết cho 17
4. Chứng minh rằng : n(2n+1 )( 7n +1 ) chia hết cho 6 với n thuộc N
5. Cho hai số tự nhiên abc và deg đều chia 11 dư 5 . Chứng minh rằng số abcdeg chia hết cho 11
6. Cho biết số abc chia hết cho 7. Chứng minh rằng: 2a +3b +c chia hết cho 7
. Chứng minh rằng:
a) 2n + 11...có n chữ số...1 chia hết cho 3
b) 10^n +18^n - 1 chia hết cho 27
c) 10^n + 72 - 1 chia hết cho 9
chứng minh rằng :
a,2n+11...........1 chia hết cho 3 (n chữ số 1)
b,10^n+18n-1chia hết cho 27
chứng minh rằng:
a) 2n + 11...1(n chữ số) chia hết cho 3.
b) 10 ^ n + 18n - 1 chia hết cho 27.
c) 10 ^ n + 72n - 1 chia hết cho 81.
Chứng minh rằng: một số có chẵn chữ số chia hết cho 11 thì hiệu giữa tổng các chữ số ''đứng ở vị trí chẵn'' và tổng các chữ số đứng ở ''vị trí lẻ'', kể từ trái qua phải chia hết cho 11
(Biết : mười mũ hai n trừ 1 và mười [mũ 2n+1] cộng 1 chia hết cho 11
Chứng minh rằng: một số có chẵn chữ số chia hết cho 11 thì hiệu giữa tổng các chữ số “đứng ở vị trí chẵn” và tổng các chữ số “đứng ở vị trí lẻ”. Kể từ trái qua phải chia hết cho 11.
(Biết 102n-1 và 102n-1+1 chia hết cho 11)
Chứng minh rằng: một số có chẵn chữ số chia hết cho 11 thì hiệu giữa tổng các chữ số “đứng ở vị trí chẵn” và tổng các chữ số “đứng ở vị trí lẻ”. Kể từ trái qua phải chia hết cho 11.
(Biết 102n-1 và 102n-1+1 chia hết cho 11)
dang trong lĩnh vực toán học lấy đâu ra mặt trăng .Đúng là đồ dở hơi
Chứng minh rằng: một số có chẵn chữ số chia hết cho 11 thì hiệu giữa tổng các chữ số “đứng ở vị trí chẵn” và tổng các chữ số “đứng ở vị trí lẻ”. Kể từ trái qua phải chia hết cho 11.
(Biết 102n-1 và 102n-1+1 chia hết cho 11)