GIÚP TÔI GIẢI RA BÀI NÀY NHA!
TÌM SỐ NGUYÊN n ĐỂ\(\frac{18n+3}{21n+7}\)LÀ PHÂN SỐ TỐI GIẢN.
Tìm n thuộc Z để 18n+3 / 21n+7 là phân số tối giản? Giúp mình nha !?
Tìm tất cả các số nguyên n để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p
suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p
vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7
do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7
vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.
BÀI NÀY MK BIẾT LÀM NHƯNG KO BIẾT CÁCH TRÌNH BÀY THÔI
BAN CHƯA RÚT GỌN HẲN
tìm tất cả các số nguyên n để 18n+3/21n+7 là phân số tối giản
giúp mình nha
tìm tất cả các sô nguyên n để phân số 18n+3/21n+7 là phân số tối giản
Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
Ta có: \(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)
Do (3;7)=(6n+1;3n+1)=(3;3n+1)=1
=> Phân số có thể rút gọn khi 6n+1 chia hết cho 7
Mà 6n+1=7n-(n-1)
=> n-1 chia hết cho 7
=> n=7k+1 thì phân số có thể rút gọn
=> n=7k+2; 7k+3; 7k+4; 7k+6; 7k+6 thì phân số có thể rút gọn
bạn ơi cho mình kỉ cái dòng thứ 2 được không ạ?
mà sao 6n+1 lại bằng 3 ạ
Tìm số nguyên n để (18n+3)/(21n+7) là phân số tối giản
Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)⋮d→21⋮d→d∈{3;7}. Hiển nhiên d≠3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d≠7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7↔18(n−1) không chia hết cho 7↔n−1 không chia hết cho 7↔n≠7k+1(k∈n)
Kết luận: Với n≠7k+1(k∈N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.
bít làm nhưng dài quá ko muốn trình bày, sorry
bài 2 Tìm tất cả số nguyên n để phân số sau là phân số tối giản
a)\(\frac{18n+7}{21n+7}\)
b)\(\frac{2n+7}{5n+2}\)
\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1
đúng k
Tìm tất cả các số nguyên để phân số
\(\frac{18n+3}{21n+7}\) là phân số tối giản.
Tìm tất cả các số nguyên n để
\(\frac{18n+3}{21n+7}\) là phân số tối giản
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)