Cho a,b,c >0 va (a+b)(b+c)(c+a)=8abc
C/m a=b=c
Cho a , b , c khác 0 va a+b+c=0
Tính \(M=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
a + b + c = 0 => a + b = -c ; b + c = -a ; a + c = -b
Do đó \(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1+\left(-1\right)+\left(-1\right)=-3\)
Ta có :\(a+b+c=0=>a+b=-c;b+c=-a;a+c=-b\)
Do đó : \(M=-\frac{c}{c}+-\frac{b}{b}+-\frac{c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
cho a/b=b/c=c/d=d/a va a+b+c khac 0.
Tinh M = 2a-b/c+d + 2b-c/a+d + 2c-d/a+b + 2d-a/b+c
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\left(\text{ vì a+b+c+d khác 0}\right)\)
\(\Rightarrow a=b=c=d\)
\(M=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2b-b}{b+b}+\frac{2c-c}{c+c}+\frac{2d-d}{d+d}=\frac{1}{2}.4=2\)
cho a,, là 3 số khac 0 va a+b+c khác thỏa mãn a/b+c = b/c+a = c/ a+b
tính gtri bthuc P= b+c/a + c+a/b + a+b/c
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)
Khi đó \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}=\dfrac{-a}{a}+\dfrac{-b}{b}+\dfrac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=2a\\c+a=2b\\a+b=2c\end{matrix}\right.\)
Khi đó:
\(P=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}=2+2+2=6\)
cho a = b + c va c = b + d / b - d ( b ; d khac 0 )
c/m : a / b = c / d
Cho a,b,c>0 va a3+b3+c3=3abc
C/m a=b=c
Áp dụng Bdt cosi 3 số dương ta có"
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c
Đpcm
Cho abc # 0 va a+b-c/c=b+c-a/a=c+a-b/b
Tính P = a+b/a*b+c/b*c+a/c
cho abc#0 va a+b-c/c=b+c-a/a=c+a-b/b
Tính P=a+b/a*b+c/b*c+a/c
cho a,b,c khac 0 va a+b-c/c =b+c-a/a=c+a-b/b tinh p=(1+b/a)(1+c/b)(1+a/c)
Ta có \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=> \(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
b + c = -a
a + c = -b
Khi đó P = \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> a = b = c
Khi đó P \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 thì P = -1
khi a + b + c \(\ne\)0 thì P = 8
cho a+b+c=0 va a³+b³+c³=0. Tinh A= a^2017+b^2017+c^2017.