Cm bất đẳng thức sau a+b+c b lớn hơn hoặc bằng ab +bc+ca
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
CM ''bất đẳng thức tam giác mở rộng '':Với 3 điểm A,B,C bất kì ,ta có :AB+AC lớn hơn hoặc bằng BC
Trên tia đối của tia AB lấy D sao cho AD = AC
Do tia CA nằm giữa hai tia CB và CD nên
\(\widehat{BCD}>\widehat{ACD}\) (1)
Mặt khác, theo cách dựng, tam giác ACD cân tại A nên
\(\widehat{ACD}=\widehat{ADC}=\widehat{BDC}\) (2)
Từ (1) và (2) suy ra :
\(\widehat{BCD}>\widehat{BDC}\)
\(\Rightarrow BD>BC\) (quan hệ góc và cạnh đối diện trong \(\Delta BCD\))
\(\Rightarrow AB+AC>BC\)
Chỉ khi \(A,B,C\) thẳng hàng
\(\Rightarrow AB+AC=BC\)
CMR a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ.
Chứng minh bất đẳng thức:
a) a^2 + b^2 + c^2 + \(\frac{3}{4}\)lớn hơn hoặc bằng - a - b - c
b) a^2 + b^2 + 4 lớn hơn hoặc bằng ab + 2(a+ b)
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự
Chứng minh BĐT :
Với mọi số thực a,b,c bất kỳ :a^2+b^2+c^2 lớn hơn hoặc bằng ab+bc+ca
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c thuộc R. Cm: (a+b+c/3 )^2 lớn hơn hoặc bằng ab+bc+ca
(a+b+c/3)2= a2+b2+(c/3)2+2ab+2/3ac+2/3bc
* a2+b2+(c/3)2 \(\ge\)0
=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\(\ge\)2ab+2/3ac+2/3bc
mà 2ab+2/3ac+2/3bc\(\ge\)ab+bc+ca
=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\(\ge\)ab+bc+ca
=> (a+b+c/3)2\(\ge\)ab+bc+ca
trả lời:
(a+b+c/3)2= a2+b2+(c/3)2+2ab+2/3ac+2/3bc
* a2+b2+(c/3)2 \ge≥0
=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\ge≥2ab+2/3ac+2/3bc
mà 2ab+2/3ac+2/3bc\ge≥ab+bc+ca
=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\ge≥ab+bc+ca
=> (a+b+c/3)2\ge≥ab+bc+ca
Chứng minh bất đẳng thức a^2+b^2/4 lớn hơn hoặc bằng ab
Help me.....
Cho a lớn hơn hoặc bằng 0, b lớn hơn hoặc bằng 0 . Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\)lớn hơn hoặc bằng \(\sqrt{ab}\)
Ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
<=>\(a+b\ge2\sqrt{ab}\)
Dấu ''='' xảy ra <=>\(\sqrt{a}-\sqrt{b}=0<=>\sqrt{a}=\sqrt{b}<=>a=b\)
Tick cho tui nha,bạn hiền
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
với ba số không âm a,b,c ,chứng minh bất đẳng thức : a+b+c+1 nhỏ hơn hoặc bằng \(\dfrac{2}{3}\)(\(\sqrt{ab}\)+ \(\sqrt{bc}\)+\(\sqrt{ca}\)+\(\sqrt{a}\)+\(\sqrt{b}\)+\(\sqrt{c}\)). khi nào bất đẳng thức xảy ra?..