Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Xuân
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 12:12

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 12:05

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 12:09

24. Tương tự câu 23 , ta được \(x=y\) hoặc \(y=-3x\)(loại trường hơp này vì mẫu thức phải khác 0)

 Vậy với x = y được \(A=-\frac{1}{2}\)

Lee Min Ho
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Nguyễn Anh Quân
14 tháng 1 2018 lúc 16:21

Có : 3x^2-y^2 = 2xy

<=> 3x^2-2xy-y^2 = 0

<=> (3x^2-3xy)+(xy-y^2) = 0

<=> (x-y).(3x+y) = 0

<=> x-y=0 hoặc 3x+y=0

<=> x=y hoặc y=-3x

Đến đó bạn thay y bởi x theo từng trường hợp rùi  tính giá trị của P nha

Tk mk nha

Nguyễn Quỳnh Chi
Xem chi tiết
alibaba nguyễn
22 tháng 9 2016 lúc 12:01

Ta có 3x2 - y2 = 2xy

<=> (3x2 - 3xy) + (xy - y2) = 0

<=> 3x(x - y) + y(x - y) = 0

<=> (x - y)(3x + y) = 0

Thế vào là tìm được A nha

alibaba nguyễn
22 tháng 9 2016 lúc 6:19
3x^3 hay 3x^2 thế
Tran Tuan Anh
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 1 2020 lúc 18:30

Bạn tham khảo tại đây:

Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)

\(\Rightarrow yz+zx+xy=0\)

Ta có : \(x^2+2yz=x^2+yz+yz\)

                              \(=x^2+yz-zx-xy\)

                              \(=x\left(x-z\right)-y\left(x-z\right)\)

                              \(=\left(x-y\right)\left(x-z\right)\)

Tương tự : \(y^2+2xz=y^2+xz+xz\)

                                    \(=y^2+xz-xy-yz\)

                                    \(=y\left(y-x\right)+z\left(x-y\right)\)

                                    \(=\left(x-y\right)\left(z-y\right)\)

                  \(z^2+2xy=\left(x-z\right)\left(y-z\right)\)

\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)  \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

Khách vãng lai đã xóa
Hoàng Việt Anh
3 tháng 7 2020 lúc 15:40

Tính thế làm gì bạn ê

Khách vãng lai đã xóa
Bảo Bảo
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Trà My
16 tháng 3 2017 lúc 9:34

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

\(\Leftrightarrow xy=-yz-zx;yz=-xy-zx;zx=-xy-yz\)

Ta có: x2+2yz=x2+yz+yz=x2+yz-xy-zx=x(x-y)-z(x-y)=(x-y)(x-z)

Tương tự: \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)

A= \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{xy\left(x-y\right)-xz\left(x-y+y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\frac{xy\left(x-y\right)-xz\left(x-y\right)-xz\left(y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)\(=\frac{\left(xy-xz\right)\left(x-y\right)-\left(xz-yz\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\frac{x\left(y-z\right)\left(x-y\right)-z\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)

Kitty.T Trần
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết