câu 7/ 6
cho a, b là các số thực dương thỏa mãn
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
Tính giá thị biểu thức P=\(a^{2007}+b^{2007}\)
Cho a. b là các số thực dương thỏa mãn: \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
Tính giá trị của biểu thức: \(P=a^{2007}+b^{2007}\)
Từ \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow a^{100}+b^{100}+a^{102}+b^{102}=2\left(a^{101}+b^{101}\right)\)
\(\Rightarrow a^{100}+b^{100}+a^{102}+b^{102}-2\left(a^{101}+b^{101}\right)=0\)
\(\Rightarrow\left(a^{102}-2a^{101}+a^{100}\right)+\left(b^{102}-2b^{101}+b^{100}\right)=0\)
\(\Rightarrow\left(a^{51}-a^{50}\right)^2+\left(b^{51}-b^{50}\right)^2=0\left(1\right)\)
Vif \(\hept{\begin{cases}\left(a^{51}-a^{50}\right)^2\ge0\forall a\\\left(b^{51}-b^{50}\right)^2\ge0\forall b\end{cases}}\)
\(\Rightarrow\left(a^{51}-a^{50}\right)^2+\left(b^{51}-b^{50}\right)^2\ge0\forall a,b\left(2\right)\)
Tứ (1) và (2) :
\(\Rightarrow\hept{\begin{cases}\left(a^{51}-a^{50}\right)^2=0\\\left(b^{51}-b^{50}\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^{51}-a^{50}=0\\b^{51}-b^{50}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^{51}=a^{50}\\b^{51}=b^{50}\end{cases}}\)
Vì a,b là các số thực dương nên \(a=b=1\)
\(\Rightarrow P=a^{2007}+b^{2007}=1^{2007}+1^{2007}=1+1=2\)
Vậy \(P=2\)
cho các số thực dương a,b thỏa mãn
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
tính \(a^{2007}+b^{2007}\)
Đặt M=a2007+b2007
Do \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)(1)
\(\Rightarrow\left(a^{101}+b^{101}\right)^2=\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)\)
\(\Leftrightarrow a^{202}+b^{202}+2.a^{101}.b^{101}=a^{202}+a^{100}.b^{102}+a^{102}.b^{100}+b^{202}\)
\(\Leftrightarrow2.a^{101}.b^{101}=a^{100}.b^{100}\left(a^2+b^2\right)\)
\(\Leftrightarrow a^{100}.b^{100}\left(a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow a^{100}.b^{100}\left(a-b\right)^2=0\)
Do a,b > 0 => (a-b)2=0 <=> a=b
Thay a=b vào (1) ta được
\(2.a^{100}=2.a^{101}=2.a^{102}\)
\(\Leftrightarrow a^{100}=a^{101}\)
\(\Leftrightarrow a^{100}\left(a-1\right)=0\)
Do a>0 nên a=1 =>b=1
Vậy M=12017+12017=2
๖ۣۜᔕᑌᖇᐯIᐯ.IO [TEᗩᗰ ᗩᔕᗰOᗷIᒪE ᗪOᖇᗩYᗩK]
Cho các số thực dương a và b thỏa mãn: a^100+b^100=a^101+b^101=a^102+b^102. Hãy tính giá trị biểu thức: P= a^2014+b^2015
cho các số thực dương thỏa mãn \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102},tính\) \(A=a^{2015}+b^{2015}\)
Theo đề ra, ta có:
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Leftrightarrow\left(a^{100}+b^{100}\right).\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)
\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)+a^{202}+b^{202}=a^{202}+b^{202}+2a^{101}.b^{101}\)
\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)=2a^{101}.b^{101}\)
\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2-2ab\right)=0\)
\(\Leftrightarrow a=b=0\)
\(\Rightarrow a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{100}=a^{101}\)
\(\Leftrightarrow a^{100}.\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
\(\Rightarrow A=a^{2015}+b^{2015}=1+1=2\).
\(Từ:\) \(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Leftrightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)
\(và\) \(a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Leftrightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0 \left(2\right)\)
\(Từ\left(1\right)\) \(và\) \(\left(2\right)\)
\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)-a^{100}\left(a-1\right)-b^{100}\left(b-1\right)=0\)
\(\Leftrightarrow a^{100}\left(a-1\right)^2+b^{100}\left(b-1\right)^2\)
\(Do\) \(a,b>0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Rightarrow A=1+1=2\)
em không chắc cho lắm ạ
cho các số thực dương a và b tm \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\) tính giá trị của biểu thức \(P=a^{2014}+b^{2015}\)
Ta có đẳng thức: \(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\) với mọi số a,b
Kết hợp với: \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow1=\left(a+b\right)-ab\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow1+b^{100}=1+b^{101}=1+b^{102}\Rightarrow b=1\\b=1\Rightarrow1+a^{100}=1+a^{101}=1+a^{102}\Rightarrow a=1\end{matrix}\right.\)
Do đó: \(P=a^{2014}+b^{2014}=1^{2004}+1^{2005}=2\)
Cho các số thực dương a và b thõa mãn: a100+b100=a101+b101=a102+b102
Tính giá trị biểu thức: P=a2014+b2014
(gt) => 1/ a^100(1-a) = b^100(b-1) => (a/b)^100(1-a)=(a/b)^101(1-a) (=b-1)
2/ a^101(1-a) = b^101(b-1)
=>(a/b)^100(1-a/b)(1-a)=0 => a=b V a=1
TH a=b: => a=b=1
TH a=1: => b=1
Vậy trong cả hai TH đều có a=b=1 => P=a^2014+b^2014=2
Quãng đường của ô tô chạy từ A là : 174 : ﴾ 3+2 ﴿ x 3 = 104.4 ﴾ km﴿ ﴾1﴿
Quãng đường của ô tô chạy từ B là : 174 ‐ 104.4 = 69.6 ﴾ km ﴿ ﴾2﴿
Từ 1 và 2 nên vận tốc của xe chạy từ A là : 104.4 :2 = 52.2 ﴾ km/giờ ﴿
Vận tốc của xe chạy tư B là : 69.6 : 2 = 34.8 ﴾ km/giờ ﴿
D/S : Va : 52.2 km/giờ V
b : 34.8 km/giờ
cho các số thực dương a và b thỏa mãn : a100+b100=a101+a101 =a102+a102
Hãy tính giá trị của biểu thức :P=a2014+b2015
( đề bồi dưỡng hs giỏi nên tớ ko bt giải mong mn giúp đỡ)
Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath
Đã là bồi dưỡng HSG thì em phải chấp nhận làm các bài khó. Cố lên! Em có thể tham khảo thêm :)))
thì lp 7 làm các dạng toán nâng cao,trong đó cx có bài của lp 8,lp 6 mà bn nguyễn hà trâm
cho các số thực dương a,b thỏa mãn a100+b100=a101+b101=a102+b102
tính P=a2016+b2017
a100+b100=a101+b101
=> b100-b101=a101-a100
<=> b100(1-b)=a100(a-1) (1)
Lại có:
a101+b101=a102+b102
=> b101-b102=a102-a101
<=> b101(1-b)=a101(a-1) <=> b101(1-b)=a.a100(a-1) = a.b100(1-b) (Do từ (1))
=> b101(1-b)-a.b100(1-b)=0 => b100(1-b)(b-a)=0
=> a=b=1
=> P=a2016+b2017=1+1=2
Đáp số: P=2
Cho a; b là các số thực dương thỏa mãn a100 + b100 = a101 + b101 = a102 + b102. Tính P = a2010 + b2010.
Ta có:\(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\forall a,b\left(1\right)\)
Mặt khác:\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\left(2\right)\)
Từ (1),(2) suy ra:
\(1=a+b-ab\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-1=0\\b-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a=1\Rightarrow b=1\\b=1\Rightarrow a=1\end{cases}}\)
\(\Rightarrow P=1+1=2\)
Chỉ có số một
Vậy a;b = 1
Vậy \(1^{2010}+1^{2010}=2\)
Vậy P = 2