cho 2 da thuc :f(x)=-x^3+3x^2+4x
g(x)=2x^3-8x^2-2x
tim x de f(x)+g(x)=0
cho cac da thuc F(x)=4x2+3x-2 G(x)=3x2-2x+5 H(x)=x(5x-2)+3
a. tim x de F(x)+G(x)-H(x)=0
b. chung to F(x)-3x+5 luon duong voi moi x
Giải:
a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)
\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)
\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)
\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)
\(=2x^2+3x\)
Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(F\left(x\right)-3x+5\)
\(=4x^2+3x-2-3x+5\)
\(=4x^2+3\)
Vì \(x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)
Vậy ...
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
cho cac da thuc F(x) = 4x^2 + 3x - 2
G(x) = 3x^2 - 2x + 5 H(x) = x(5x-2) +3
a) tim x de F(x) + G(x) - H(x) = 0
b) chung to F(x) - 3x + 5 luon duong voi moi x
cho da thuc f(x) =-6x^3 + 8x^2 -1/2 -4^4 va g(x) = 4x^4+5/2-5x^2+6x^3
tinh h(x)=f(x)+g(x)
chung to h(x) khong co nghiem
Làm tắt thôi nhé bn !
Có h(x) = f (x) + g (x) = 3x2 + 2 ( sau khi tính kết quả sẽ ra vậy nhé ! mk làm tắt )
Lại có h ( x) có :
3x2 \(\ge\)0
2 >0
Từ 2 điều này => 3x2 +2 \(\ge2\)
=> h(x) ko có nghiệm
F(x) = \(-6x^3+8x^2-\frac{1}{2}-4^4\)
+ G(x) = \(6x^3-5x^2+\frac{5}{2}+4x^4\)
_________________________________________
H(x) = \(3x^2+3\)
Vậy H(x) = 3x2 + 3
\(f\left(x\right)+g\left(x\right)=\left(-6x^3+8x^2-\frac{1}{2}-4^4\right)+\left(4x^4+\frac{5}{2}-5x^2+6x^3\right)\)
\(=-6x^3+8x^2-\frac{1}{4}-4^4+4x^4+\frac{5}{2}-5x^2+6x^3\)
\(=\left(-6x^3+6x^3\right)+\left(8x^2-5x^2\right)+\left(-\frac{1}{2}+\frac{5}{2}\right)+\left(-4^4+4x^4\right)\)
\(=3x^2+2\)
\(\Rightarrow h\left(x\right)=3x^2+2\)
Ta có: \(3x^2\ge0\forall x\)
\(\Rightarrow3x^2+2\ge0\forall x\)
Vậy: h(x) = 3x2 + 2 không có nghiệm
cho 2 da thuc :f(x)=3x^3 - 2x^2 + x + 5
g(x)=3x^2 + ax + b
tim a,b sao cho f(x)=(x-1)*g(x)
moi nguoi giai giup em voi
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.
cho da thuc f(x)= -2+x^4+2x^2-3x^3+4x^4-5x^4+3x^3+3 chung minh rang da thuc f(x) ko co nghiem tai moi gia tri cua x
cho da thuc f(x)+3x^2+2x-5va g(x)=-3x^2-2x+2 tinh k=f+g va tim bac cua k
`K(x)=F(x)+G(x)`
`K(x)=(3x^2+2x-5)+(-3x^2-2x+2)`
`= 3x^2+2x-5-3x^2-2x+2`
`= (3x^2-3x^2)+(2x-2x)+(-5+2)`
`= -3`
Bậc của đa thức: `0`
`@` `\text {dnammv}`
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$