cho a/b=b/c=c/d
cm: (a^3+b^3+c^3)/(b^3+c^3+d^3)=(c+a)/(c-a)
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho b^2= ac, c^2= bd với b,c,d khác 0, b+c khác d, b^3+c^3 khác d^3 : a^3+b^3-c^3 / b^3+c^3-d^3= ( a+b+c/b+c-a)^3
Cho a/b=b/c=c/d với b+c+d khác 0. Chứng minh: +) a^3+b^3+c^3/ b^3+c^3 - d^3=(a+d-c/b+c-d)^3
Lê Minh Tuấn bn tham khảo nha:
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
Cho a/b= b/c= c/d. CMR a/d= a^3+b^3+c^3/ b^3+c^3+d^3
Lời giải:
Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$
$t^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}(1)$
Áp dụng tính chất dãy tỉ số bằng nhau:
$t^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}(2)$
Từ $(1);(2)$ ta có đpcm.
Cho tỉ lệ thức a/b = c/d. Chứng yor rằng: 1) a/a+b = c/c+d; 2) 2.a+b/a-2.b = 2.c+d/c-2.d; 3) a+b/a-c = c+d=c-d; 4) 5.a+3.b/5.c+3.d = 5.a-3.b/5.c-3.d
1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)
Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)
\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
cho a/b=b/c=c/d CMR: a^3+b^3+c^3/b^3+c^3+d^3=a/d
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{d}.\frac{c}{d}.\frac{c}{d}\)
=>\(\frac{a.b.c}{b.c.d}=\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}\)
=>\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>ĐPCM
1. Cho tỉ lệ thức a/b=c/d chứng minh rằng
a. 2006*(a+c)/2006*a=b+d/b
b.a-b/a+b=c-d/c+d
c.2*a+5*b/3*a-4*b=2*c+5*d/3*c-4*d
d. (a+b/c+d)^3=a^3-b^3/c^3-d^3
Cho a/b=c/d
a) c/a-c=b/b-d
b) a/c=a+b/c+d
C) 2.a + 3+a/2.b + 3.d= 2.a -3.c/ 2.b-3.d
Trl nhanh cho mik vs ạ!! Mik đag cần gấp!!:33
a) Đề phải là \(\frac{c}{a-c}=\frac{d}{b-d}\) chứ.
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{d}{b}=\frac{c}{a}\)
\(\Rightarrow\frac{b}{d}=\frac{a}{c}\)
\(\Rightarrow\frac{b}{d}-1=\frac{a}{c}-1\)
\(\Rightarrow\frac{b}{d}-\frac{d}{d}=\frac{a}{c}-\frac{c}{c}.\)
\(\Rightarrow\frac{b-d}{d}=\frac{a-c}{c}\)
\(\Rightarrow\frac{d}{b-d}=\frac{c}{a-c}\left(đpcm1\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) (1)
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\left(đpcm\right).\)
Chúc bạn học tốt!