c/m M=1/3+2/3^2+3/3^3+....+2022/3^2022 không là số nguyên
\(\text{cho M = 1 2 3 + 2 3 3 + 3 4 3 + . . . + 2021 2022 3 + 2022 2023 3 . Chứng tỏ rằng giá trị của M không phải là một số tự nhiên}\)
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\) chứng minh rằng giá trị của M không phải là một số tự nhiên
gấp =) !
Ta có thể viết lại M dưới dạng:
M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)
= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]
= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)
= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)
Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có
1/n³ > 1/(n+1)³
Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,
1/2³ > 1/3³
1/3³ > 1/4³
…
1/2022³ > 1/2023³
Vậy ta có
M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³
Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.
Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:
S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³
Với mọi số nguyên dương n, ta có:
1/n³ < 1/n(n-1)
Do đó,
1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...
1/2023³ < 1/(2023x2024)
Tổng các số hạng bên phải có thể được viết lại dưới dạng:
1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1
Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\). Chứng tỏ rằng giá trị của M không phải là một số tự nhiên
cho tổng
M = 1/3+ 2/3^2+3/3^3+.....+ 2022/3^2022+ 2023/3^2023
So sánh M với 3/4
Cho A = (-1 ; 2m + 3) với m > -2. Tìm m để A chứa 2022 số nguyên
Để A chứa 2022 số nguyên \(\Leftrightarrow\left(2m+3--1\right):1+1-2=2022\)
\(\Leftrightarrow2m+4=2023\)\(\Leftrightarrow m=\dfrac{2019}{2}\)(tm)
1)chứng tỏ rằng A =\(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là một phân số tối giản
2)cho 3 só nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước là d đơn vị.chứng minh d chia hết cho 6
A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)
Gọi ước chung lớn nhất của
22021 + 32021 và 22022+32022 là d (d\(\in\)N*)
Ta có : \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
Trừ vế với vế ta được 32022 - 2.32021 ⋮ d
⇒ 32021.( 3 - 2) ⋮ d
⇒ 32021 ⋮ d
⇒ d \(\in\){ 1; 3; 32; 33;........32021)
nếu d \(\in\) { 3; 32; 33;.....32021) thì
⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )
vậy d = 1
Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)
cho a=2022/2021^2+1 + 2022/2021^2+2 + 2022/2021^2+3 + ....+2022/2021^2+2021 Hãy chứng tỏ A không phải là số tự nhiên
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: (với là số tự nhiên bất kì)
Ta có:
Ta có: với tự nhiên, )
Suy ra
Suy ra do đó không phải là số tự nhiên.
Ta có: (với là số tự nhiên bất kì)
Ta có:
Ta có: với tự nhiên, )
Suy ra
Suy ra do đó không phải là số tự nhiên.
cho a=2022/2021^2+1 + 2022/2021^2+2 + 2022/2021^2+3 + ....+2022/2021^2+2021 Hãy chứng tỏ A không phải là số tự nhiên
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
2/3^3+3/4^3+4/5^3+...+2021/2022^3+2022/2023^3 Chứng tỏ rằng giá trị này không phải là số tự nhiên
Để chứng tỏ rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên, chúng ta có thể sử dụng phương pháp giả sử đối chứng.
Giả sử rằng dãy giá trị này là số tự nhiên, tức là tất cả các phần tử trong dãy đều là các số tự nhiên. Ta xem xét phần tử cuối cùng của dãy, tức là 2022/2023^3.
Nếu 2022/2023^3 là số tự nhiên, thì 2022/2023^3 + 1 cũng phải là số tự nhiên.
Tuy nhiên, nếu ta tính giá trị của biểu thức 2022/2023^3 + 1,
ta sẽ có: 2022/2023^3 + 1 = (2022 + 2023^3) / 2023^3
Với các giá trị số học, ta biết rằng tỷ số của hai số nguyên không thể tạo ra một số nguyên khác. Do đó, biểu thức trên không thể là số tự nhiên.
Vậy, ta có thể kết luận rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên.