chứng minh rằng điều kiện cần và đủ để hai đường chéo của một tứ giác lồi vuông góc bằng nhau là tổng các bình phương của các cạnh đối diện của tứ gíc đó
chứng minh rằng điều kiện cần và đủ để hai đường chéo của một tứ giác lồi vuông góc bằng nhau là tổng các bình phương của các cạnh đối diện của tứ giác đó
chứng minh rằng điều kiện cần và đủ để hai đường chéo của tứ giác lowig vuông góc với nhau là tổng các bình phương của các cạnh đối diện của tứ giác bằng nhau
Xét tứ giác ABCD có cạnh đối diện AD và BC cắt nhau tại O. Gọi D1 và C1 lần lượt là các điểm đối xứng của C và D qua O. Khi đó có :
\(AC_1=AC,BD_1=BD,C_1D_1=CD\)
Áp dụng định lí ta có:
\(ABD_1C_1:AD_1\perp BC_1\Leftrightarrow AB^2+C_1D_1^2=AC^2_1+BD^2_1\)
\(\Rightarrow AD\perp BC\Leftrightarrow AB^2+CD^2=AC^2+BD^2\)
Chứng minh rằng điều kiện cần và đủ để hai đường chéo của tứ giác lồi
vuông góc với nhau là tổng các bình phương của các cạnh đối diện của tứ giác bằng nhau.
cm định lí 4 điểm giúp mk nha
Xét tứ giác ABCD có cạnh đối diện AD và BC cắt nhau tại O
Gọi D1 và C1 lần lượt là các điểm đối xứng của C và D qua O
Khi đó:\(\hept{\begin{cases}AC_1=AC\\BD_1=BD\\C_1D_1=CD\end{cases}}\)
Áp dụng định lí ta có:
Tứ giác \(ABC_1D_1:AD_1\perp BC_1\)
\(\Leftrightarrow AB^2+C_1D_1^2=AC_1^2+BD_1^2\)
\(\Rightarrow AD\perp BC\)
\(\Leftrightarrow AB^2+CD^2=AC^2+BD^2\)
Cre:h
a) Chứng minh trong một tứ giác có hai đường chéo vuông góc, tổng bình phương của hai cạnh đối này bằng tổng các bình phương của hai cạnh đối kia.
b) Tứ giác ABCD có AC vuông góc với BD. Biết AD = 5cm, AB = 2 cm, BC = 10 cm. Tính độ dài CD
Gọi đoạn nối trung điểm hai cạnh đối diện của một tứ giác lồi là đường trung bình của tứ giác đó. Chứng minh rằng nếu tổng độ dài hai đường trung bình của một tứ giác bằng nửa chu vi thì tứ giác đó là một hình bình hành
Gọi M. N, P và Q theo thứ tự là trung điểm các cạnh AB, CD, BC và DA của tứ giác lồi ABCD
Khi đó :
\(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\) và \(\overrightarrow{PQ}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{CD}\right)\)
Ta có : \(\left|\overrightarrow{MN}\right|+\left|\overrightarrow{PQ}\right|=\frac{1}{2}\left(\left|\overrightarrow{AD}+\overrightarrow{BC}\right|+\left|\overrightarrow{BA}+\overrightarrow{CD}\right|\right)\)
\(\le\frac{1}{2}\left(\left|\overrightarrow{AD}\right|+\left|\overrightarrow{BC}\right|+\left|\overrightarrow{BA}\right|+\left|\overrightarrow{CD}\right|\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{BC}\) và \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)
Suy ra điều cần chứng minh
Chứng minh rằng nếu tứ giác ABCD có hai đường chéo vuông góc với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hai cạnh đối kia.
Gọi giao điểm 2 đường chéo AC,BD là E
Ta có: \(AB^2+CD^2=AE^2+BE^2+CE^2+DE^2\)
\(=\left(AE^2+DE^2\right)+\left(BE^2+CE^2\right)=AD^2+BC^2\)
\(\Rightarrow\) đpcm
Chứng minh rằng nếu tứ giác ABCD có hai đường chéo vuông góc với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hai cạnh đối kia
Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O
\(AB^2=0A^2+OB^2\)
\(CD^2=OC^2+OD^2\)
\(AD^2=OA^2+OD^2\)
\(BC^2=OB^2+OC^2\)
\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)
\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)
Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)
Chứng minh rằng nếu tứ giác ABCD có hai đường chéo vuông góc với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hi cạnh đối kia.
Gọi giao của AC và BD là O , do hai đường chéo vuông góc
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 ( dpcm )
Mình làm đúng không các bạn ??? Đúng thì nha !!
Câu 4:Trong các mệnh đề sau, mệnh đề nào sai? A. Để tứ giác là hình bình hành, điều kiện cần và đủ là hai cạnh đối song song và bằng nhau. B. Để điều kiện đủ là . C. Để tổng của hai số nguyên chia hết cho 13, điều kiện cần và đủ là mỗi số đó chia hết cho 13. D. Để có ít nhất một trong hai số là số dương điều kiện đủ là .