chứng minh rằng điều kiện cần và đủ để hai đường chéo của một tứ giác lồi vuông góc bằng nhau là tổng các bình phương của các cạnh đối diện của tứ giác đó
Cho hình thang \(ABCD\left(AB//CD\right)\)có hai đường chéo vuông góc với nhau.
a) Chứng minh tổng các bình phương của hai đáy bằng tổng các bình phương của hai cạnh bên.
b) Chứng minh tổng các bình phương của hai đường chéo bằng bình phương của tổng hai đáy.
c) Kẻ đường cao AH và đường trung bình MN của hình thanh ABCD. Biết BD=9cm, AC=12cm.
Tính diện tích tứ giác AMHN
Cho tứ giác ABCD nội tiếp đường tròn tâm O. Hai đường chéo AC và BD vuông góc với nhau tại E. Chứng mình rằng một đường thẳng qua E và vuông gốc với một cạnh của tứ giác khi và chỉ khi đường thẳng đó đi qua trung điểm của cạnh đối diện của tứ giác
Chứng minh rằng hai tam giác có một đỉnh là giao điểm của hai cạnh đối của một từ giác , hai đỉnh kia là trung diểm hai đường chéo của tứ giác đó có diện tích bằng 1/4 diện tích tứ giác
cho tứ giác lồi ABCD, E là giao điểm của 2 đường chéo. Vẽ các đường trên ngoại tiếp tam giác AEB và CED. Tìm điều kiện của tứ giác để 2 đường tròn tiếp xúc nhau
Helppp
Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho
sd A B ^ = 60 ° , sd B C ^ = 90 ° và sd C D ^ = 120 °
a) Tứ giác ABCD là hình gì?
b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.
c) Tính độ dài các cạnh của tứ giác ABCD theo R.
Sử dụng thuật ngữ “điều kiện đủ” để phát biểu các định lí sau:
a) Nếu tứ giác MNPQ là một hình vuông thì hai đường chéo MP và NQ bằng nhau
b) Trong mặt phẳng, nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng ấy song song với nhau.
c) Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau.
Chứng minh:
a, Diện tích của một tam giác bằng nửa tích của hai cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa hai cạnh ấy
b, Diện tích của tứ giác bất kỳ bằng nửa tích của hai đường chéo nhân với sin của góc nhọn tạo bởi hai đường chéo
Cho tứ giác lồi ABCD. CMR nếu tồn tại một đường tròn nội tiếp tứ giác và một đường tròn tiếp xúc với các cạnh kéo dài của nó thì:
a) AB+DC=AD+BC
b) AB-DC=AD-BC
c) Các đường chéo của tứ giác vuông góc với nhau.