S= 1.2 + 2.3 + ....... + n . ( n+1)
Tính tổng
S=1.2+2.3+3.4+4.5+...+99.100
S=1.2+2.3+...+(n-1).n. (n thuộc N sao)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
S = 1.2 +2.3 + 3.4 + ........+n.(n+1)
Em tham khảo:
Câu hỏi của nguyễn huy bảo - Toán lớp 7 - Học trực tuyến OLM
Cho S=\(\frac{1}{1.2}\)+\(\frac{1}{1.2+2.3}\)+...+\(\frac{1}{1.2+2.3+3.4+...+n.\left(n+1\right)}\)
Chứng minh S<\(\frac{3}{4}\)
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
Mình nhầm 1 chỗ: \(\frac{1}{1.2+2.3+3.4}=\frac{3}{3.4.5}\)
S=1.2+2.3+3.4+.............+n(n+1)
S=1.2+2.3+3.4+.....+N(N+1)
3S=1.2(3-0)+2.3(4-1)+....+N.(N+1)+N(N+1)-(N+2)
3S=1.2.3+2.3.4+3.4.5+.+N(N+1)+(N+2)
3S=N(N+1)+(N+2)
S=N(N+1)+(N+2)/3
3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) -
0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
3A=n.(n+1).(n+2)
A=n.(n+1).(n+2)\3
Ai tk mình mk tk lại nha
S=1.2+2.3+3.4+.............+n(n+1)
3s=1.2(3-0)+2.3(4-1)+...+n.(n+1).(n+2)-(n-1)
3a=1.2.3+2.3.4+3.4.5+....+(n-1).n(n+1)+n(n+1)(n+2)-
0.1..2-1.2.3-3.4.5-....-(n-1)n(n+1)
3a=n.(n+1)(n+2)
a=n(n+1)(n+2)/3
1.2+2.3+3.4.....+n.(n+1)=A
ta có
3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) -
0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
3A=n.(n+1).(n+2)
A=n.(n+1).(n+2)\3
ai mình nt mik lại
tính tổng S= (1.2)² + (2.3)² + (3.4)² + … + [n(n + 1)]²
tính tổng S=1.2+2.3+3.4+...+n.(n+1)
Tinh S = 1.2+2.3+3.4+...+n.(n+1)
Tính tổng S = 1.2 +2.3 +3.4 +...+ n(n+1).(n+2)