2ⁿ + 2 ⁿ+³ = 144
a)
16/2ⁿ=2
b)
(-3)ⁿ/81=-27
c)
8ⁿ.2ⁿ
Ai biết giúp mình ko biết thì đừng nói nhiền
\(\frac{16}{2^n}=2\)=> \(2^n=16:2=8\)=> \(n=3\)
b) \(\frac{\left(-3\right)^n}{81}=-27\)=> \(\left(-3\right)^n=-27.81=-2187\)=> n=7
c) \(8^n.2^n=16^n\)
a) \(\frac{16}{2^n}=2\)
\(2^n=\frac{16}{2}=8\)
\(2^n=2^3\)
\(\Rightarrow n=3\)
b) \(\frac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n=\left(-27\right).81=-2187\)
\(\left(-3\right)^n=\left(-3\right)^7\)
\(\Rightarrow n=7\)
c) Bạn viết thiếu đề nhé !
\(8^n.2^n=?\)
2ⁿ:2⁴=1
2n : 24 = 1
=> 2n-4 = 1 = 20
=> n - 4 = 0
=> n = 0 + 4
=> n = 4
Hãy chứng minh
a,6⁵×5-3⁵ chia hết cho 53
b, 2+2²+2³+2⁴+...+2¹²⁰ chia hết cho 3,7,31,17
c,3⁴ⁿ+¹ +2⁴ⁿ+¹ chia hết cho 5
d, 75+(4²⁰⁰⁶ + 4²⁰⁰⁵+4²⁰⁰⁴+...+1)×25 chia hết cho 100
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)
Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)
\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)
\(\Rightarrow3E=4E-E\)
\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)
\(=4^{2007}-1\)
\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)
\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)
Ta có:
\(4^{2007}=\left(4^2\right)^{1003}.4\)
\(4^2\equiv6\left(mod10\right)\)
\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4
2ⁿ=16
24 : (x + 1) + 2 = 6
16 : (x + 1) = 6 - 2
16 : (x + 1) = 4
x + 1 = 16 : 4
x + 1 = 4
x = 4 - 1
x = 3
Tìm x biết:
a)(x-1)³=(x-1)^5. b)(x-1)ⁿ=(x-1)ⁿ+²
a. x=(x-1)^2
b. câu hỏi chưa xong kìa
(x-1)3\(=\)(x-5)3
\(\Leftrightarrow\)(x-1)3-(x-1)5\(=\)0
\(\Leftrightarrow\)(x-1)3\([\)1-(x-1)2\(]\)\(=\)0
\(\Leftrightarrow\)(x-1)3\(=\)0 hoặc 1-(x-1)2\(=\)0
\(\Leftrightarrow\)x-1\(=\)0 hoặc x-1\(=\pm\)1
\(\Leftrightarrow\)x\(=\)1 hoặc x\(=\)2; x\(=\)0
Vậy x\(\in\){1;2;0}
b) (x-1)n\(=\)(x-1)n+2
\(\Leftrightarrow\)(x-1)n-(x-1)n+2\(=\)0
\(\Leftrightarrow\)(x-1)n\([\)1-(x-1)2\(]\)\(=\)0
\(\Leftrightarrow\)(x-1)n\(=\)0 hoặc (x-1)2\(=\)1
\(\Leftrightarrow\)x\(=\)1 hoặc x\(=\)2; x\(=\)0
Vậy x\(\in\){1;2;0}
Tìm n
a, 4 ⁿ+² = 64
b, (x+2)⁴ = 625
a, đề k rõ :v
b, (x + 2)4 = 625
=> (x + 2) = (+5)4
=> x + 2 = + 5
=> x = 3 hoặc x = -7
vậy_
a, \(4^{n+2}\) = 64
\(4^{n+2}\) = \(4^3\)
n + 2 = 3
n = 3 -2
n = 1
a, \(\left(x+2\right)^4\) = 625
\(\left(x+2\right)^4\) = \(5^4\)
x +2 = 5
x= 5 - 2
x= 3
Tk mk nha
(x+2)4=625
(x+2)4=54
x+2=5(vì số mũ 4>0)
x=3
kb nha
Cho tỉ lệ thức a/b=c/d.Chứng minh :a)a/a-b=c/c-d
b)aⁿ-bⁿ/cⁿ-dⁿ=(a-b)ⁿ/(c-d)ⁿ,c)a/3a+b=c/3a-d
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)(*)
mà \(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}\)
Từ (*) \(\Rightarrow\frac{a^n-b^n}{c^n-d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)
c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}=\frac{3a-b}{3c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}=\frac{3a-b}{3c-d}\)
...
phần c mk ko bk xl bn nha! nom giùm mk đề
Cho S=1 phần 2+2 phần 2²+3 phần 2³+.
.....+n phần 2ⁿ+....+2007 phần 2 mũ 2007
Nhanh nhé ngày 24 là mk học rồi mk tick
Cho tong gom 2014 so hang:
S=1/4+2/4²+3/4³+......+2014/4²ⁿ¹⁴
Chung minh:S<1/2