tìm x,y,z sao cho 1/x+1/y+1/z=2
Tìm x,y,z sao cho
x/y+z+1 = y/x+z+1 = z/ x+y-2 = x+y+z
Áp dụng tính chất dãy tỉ số bằng nhau ta có : x+y+z=x/y+z+1=y/z+x+1=z/x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z=1/2 ; x=1/2.(y+z+1) ; y=1/2.(x+z+1) ; z = 1/2.(x+y-2)
=> x=0 ; y=1/2 ; z=-1/2
Vậy .........
k mk nha
ak sorry mk nhầm đáp án đáp án là : x=y=1/2 và z=-1/2 nha
Tk mk nha !
Tìm các số nguyên x, y, z sao cho x2=y-1,y2=z-1,z2=x-1
tìm x,y,z sao cho :2.x=-3.y=4z và 1/x+1/y+1/z=1/3
Ta có:
\(2.x=-3.y=4.z\)
\(=\frac{2}{\frac{1}{x}}=\frac{-3}{\frac{1}{y}}=\frac{4}{\frac{1}{z}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(2.x=-3.y=4.z=\frac{2}{\frac{1}{x}}=\frac{-3}{\frac{1}{y}}=\frac{4}{\frac{1}{z}}=\frac{2+\left(-3\right)+4}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{3}{\frac{1}{3}}=3.3=9\)
\(\Rightarrow\begin{cases}x=\frac{9}{2}\\y=\frac{9}{-3}=-3\\z=\frac{9}{4}\end{cases}\)
Vậy \(x=\frac{9}{2};y=-3;z=\frac{9}{4}\)
TÌm x ; y ; z sao cho :
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{5}\) ( x , y , z ∈ N* )
Ai giúp mình với
Mình đăng trên OLM mà không ai giúp
Lên hỏi đáp 247 cũng không có gì
Đành lên đây
Mọi người giúp mình với
tìm 3 số dương x, y, z sao cho x^2+y^2+z^2+2xy+2x(z-1)+2y(z+1)là số chính phương
Xét các số thực dương x, y, z thay đổi sao cho x(x - 1) + y(y - 1) + z(z - 1) = 0
1. Chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\ge1\)
2. Tìm GTLN của biểu thức \(P=x^2+y^2+z^2-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{zx}{z+x}\)
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
1.tìm \(x\in Z\) sao cho \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
1.tìm \(x\in Z\) sao cho \(\dfrac{x-1}{x+5}\) là 1 số nguyên
1.tìm \(x,y\in Z\) sao cho \(\left(x-1\right).\left(y-3\right)=7\) là 1 số nguyên
325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
Tìm x, y,z sao cho: 1/x + 1/y + 1/z = 1