Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thơ Nụ =))
Xem chi tiết
Akai Haruma
14 tháng 1 lúc 0:40

Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$

$\Leftrightarrow (x+2y)^2+y^2=2023$

Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$

Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$

$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$

Mà $2023\equiv 3\pmod 4$

Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$

Tiến Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 15:35

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

ILoveMath
18 tháng 2 2022 lúc 15:39

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

Phạm Tuấn Kiệt
Xem chi tiết
Bùi Khánh Huyền
Xem chi tiết
Linh Trần Thị Thùy
Xem chi tiết
letrungkien
Xem chi tiết
Akai Haruma
25 tháng 1 lúc 17:12

Lời giải:

PT $\Leftrightarrow x^2-4xy+(5y^2+2y-3)=0$

Dấu "=" tồn tại nghĩa là pt luôn có nghiệm.

$\Leftrightarrow \Delta'=(2y)^2-(5y^2+2y-3)\geq 0$

$\Leftrightarrow -y^2-2y+3\geq 0$

$\Leftrihgtarrow y^2+2y-3\leq 0$

$\Leftrightarrow (y-1)(y+3)\leq 0$

$\Leftrightarrow -3\leq y\leq 1$

$\Rightarrow y_{\max}=1$

Nguyễn Khắc Hoàng Quân
Xem chi tiết
Nguyễn Tiến Minh
15 tháng 2 2021 lúc 9:25

.Ta có:

x4−5y=32x4−5y=32

→x−20y=6→x−20y=6

→x−6=20y→x−6=20y

→(x−6)y=20→(x−6)y=20

Mà x,y∈N→(x−6,y)x,y∈N→(x−6,y) là cặp ước của 2020 

Mặt khác y∈N→y≥0y∈N→y≥0

→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}

→(x,y)∈{(26,1),(16,2),(11,4),(10,5),(8,10),(7,20)}

Khách vãng lai đã xóa
vũ quang dương
Xem chi tiết
Bùi Đức Huy Hoàng
12 tháng 2 2022 lúc 16:06

mình sửa ở dòng 4 là (n\(\in N\))(k\(\in Z\))

Bùi Đức Huy Hoàng
14 tháng 2 2022 lúc 16:04

t thấy x=2 và y=7 thỏa pt trên

cần chứng minh các số nguyên tố khác 2 và 7 ko thỏa đk ta có các số nguyên tố phần lớn là số lẻ (trừ số 2) nên khi ta bình phương  hoặc lập phương nó lên, nó là tích hai hoặc ba số lẻ có kết quả là các số lẻ và đều có dạng x=2n+1, y=2k+1(nN)(k Z) khi đó vế trái sẽ là 2n+1+49=2k+1

<=>2n+50=2k+1

mà vế trái chia hết cho 2 còn vế phải thì ko

vậy ngoài số 2 và 7 ra thì ko có số ngto nào thỏa điều kiện

vậy x=2 và y=7

Minz Ank
Xem chi tiết