Chứng tỏ rằng đa thức Q(x)= \(x^4-x^3+1+x^3\) không có nghiệm
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.
a) Chứng tỏ rằng đa thức f(x) = 1/3 x^4 + 3^2 +1 không có nghiệm
b) Chứng tỏ rằng đa thức P(x) = -x+ x^5 -x^2 +x +1 không có nghiệm
a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)
Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x
=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x
=> f (x) vô nghiệm (đpcm)
b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)
Ta có \(x^2\ge0\)với mọi giá trị của x
=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x
=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x
=> P (x) vô nghiệm (đpcm)
Chứng tỏ rằng x=1/2 là nghiệm của đa thức P(x)=4x^2-4x+1 và chứng tỏ đa thức Q(x) =4x^2+1 không có nghiệm
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
Ta có :
\(4x^2\ge0\)
\(1>0\)
\(\Rightarrow4x^2+1>0\)
=> Đa thức Q(x) vô nghiệm
chứng tỏ rằng đa thức \(H\left(x\right)=x^4+2x^3+2x^2+1\) không có nghiệm
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt
a,chứng tỏ rằng đa thứcf(x)=\(\dfrac{1}{3}\) x\(^4\)+3x\(^2\)+1 không có nghiệm
b,chứng tỏ rằng đa thứcP(x)=-x\(^8\) +x\(^5\)-x\(^2\)+x+1 không có nghiệm
Chứng tỏ rằng đa thức sau không có nghiệm H(x) = 2\(^{x^2}\) + 5\(^{x^3}\) + 3 - (1 + 5\(^{x^3}\))
\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)
=>H(x) ko có nghiệm
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Cho đa thức f(x)\(=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) Chứng tỏ rằng đa thức trên ko có nghiệm
f(x)=5x3+2x4-x2+3x2-x3-x4+1-4x3
=(5x3-x3-4x3)+(2x4-x4)+(3x2-x2)+1
=0+x4+2x2+1>(=)0+0+0+1=1
=>đa thức f(x) không có nghiệm
=>đpcm
Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
c) Chứng tỏ rằng x=-1 là nghiệm của\(P\left(x\right)\) nhưng không phải là nghiệm của Q(x)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)