phân tích đa thức thành nhân tử :
a, 2x^2 + 4x + 2 - 2y^2
b, 2xy - x^2 - y^2 + 16
phân tích đa thức sau thành nhân tử :
a, 2x^2y - 8xy^2
b, x^2 -2xy + y^2 -16
a)
\(2x^2y-8xy^2\\ =2xy\left(x-4y\right)\)
b)
\(x^2-2xy+y^2-16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y-4\right)\left(x-y+4\right)\)
Phân tích đa thức thành nhân tử
2x+2y-x^2-xy
x^2y+xy^2-4x-4y
5x-5y+ax-ay
a^3-a^2x-ax+xy
x^2+4x-2xy-4y+y^2
Phân tích các đa thức sau thành nhân tử
a) x^3 - 2x^2 + x
b) 2x^4 + 4x + 2 - 2y^2
c) 2xy - x^2 - y^2 + 16
d) x^3 - 49x
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a.2x^2-4x-8y^2+2
b.16+2xy-x^2-y^2
c.x^2-4+3.(x-2)^2
d.x^4+2x^2-15
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử
x^2-2xy+y^2-2x+2y
x^2-4x+4-x^2y+2xy
ax^2-3axy-x^2+6xy-9y^2
2a^2x-5a^2y-4x^2+30xy-25y^2
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
c) Ta có: \(ax^2-3axy-x^2+6xy-9y^2\)
\(=ax\left(x-3y\right)-\left(x^2-6xy+9y^2\right)\)
\(=ax\left(x-3y\right)-\left(x-3y\right)^2\)
\(=\left(x-3y\right)\left(ax-x+3y\right)\)
d) Ta có: \(2a^2x-5a^2y-4x^2+30xy-25y^2\)
\(=a^2\left(2x-5y\right)-\left(4x^2-30xy+25y^2\right)\)
\(=a^2\left(2x-5y\right)-\left(2x-5y\right)^2\)
\(=\left(2x-5y\right)\left(a^2-2x+5y\right)\)
1) Phân tích đa thức thành nhân tử:
a) x4+2x3+x2
b)2x2+4x+2-2y2
c) 16-2xy-x2-y2
1, x2(x2+2x+1)=x2(x+1)2
2, 2(x2+2x+1-y2)=2(x+1-y)(x+1+y)
3, 16-(x2+2xy+y2)=(4-x-y)(4+x+y)
\(x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
hk tốt
^^
Phân tích đa thức sau thành nhân tử
a) (a^2+b^2)^2-4a^2b^2
b) 3x^2-3xy-5x+5y
c) -x^3+3x^2 -3x+1
d) 2x^2+4xy+2y^2- 8z^2
e) a^3-a^2-a+1
f) x^3-2xy-x^2y+2y^2
e) Ta có: \(a^3-a^2-a+1\)
\(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
f) Ta có: \(x^3-2xy-x^2y+2y^2\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
d) Đề sai ko ???
e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)
f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
a, \(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(\left(a-b\right)\left(a+b\right)\right)^2=\left(a^2-b^2\right)^2\)
\(b,=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
\(c,=-\left(x^2-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(d,=2\left(x^2+2xy+y^2-4z^2\right)=2\left(\left(x+y\right)^2-4z^2\right)=2\left(x+y-2z\right)\left(x+y+2z\right)\)
\(e,=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)\)
\(f,=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích các đa thức sau thành nhân tử :
a) \(x^3-2x^2+x\)
b) \(2x^2+4x+2-2y^2\)
c) \(2xy-x^2-y^2+16\)
Bài giải:
a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2
b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]
= 2[(x + 1)2 – y2]
= 2(x + 1 – y)(x + 1 + y)
c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2
= (4 – x + y)(4 + x – y)
a) \(x^3 - 2x^2 + x\) \(= x(x^2 - 2x + 1)\)
\(= x (x - 1 )^2\)
b) \(2x^2 + 4x + 2 - 2y^2\) \(= 2(x^2 + 2x + 1 - y^2)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1^2\right)-y^2\right]\)
\(= 2 (x+1-y) (x+1+y)\)
c) \(2xy - x^2 - y^2 + 16\) \(= - (x^2 - 2xy + y^2 - 4^2)\)
\(= - [(x^2 - 2xy + y^2) - 4^2]\)
\(= - [(x-y)^2 - 4^2 ]\)
\(= - (x - y - 4) (x- y + 4)\)