Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2019 lúc 3:10

x(x – 1) – y(1 – x)

= x(x – 1) – y[–(x – 1)]

= x(x – 1) + y(x – 1)

= (x – 1)(x + y)

Tại x = 2001, y = 1999, giá trị biểu thức bằng:

(2001 – 1)(2001 + 1999) = 2000.4000 = 8000000

Hoàng Tử
Xem chi tiết
Lion
27 tháng 2 2019 lúc 17:52

a) 15.91,5 + 150.0,85

= 15.91,5 + 15.10.0,85

= 15.91,5 + 15.8,5

= 15(91,5 + 8,5)

= 15.100

= 1500

b) x(x – 1) – y(1 – x)

= x(x – 1) – y[–(x – 1)]

= x(x – 1) + y(x – 1)

= (x – 1)(x + y)

Tại x = 2001, y = 1999, giá trị biểu thức bằng:

(2001 – 1)(2001 + 1999) = 2000.4000 = 8000000

ok a!!

Tran  Hoang Phu
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 8:08

a.

\(x^2+xy+x=x\left(x+y+1\right)\)

Tại \(x=77;y=22\Rightarrow x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)

b.

\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)

\(=\left(53-3\right)^2=50^2=2500\)

c.

\(x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x+y\right)\left(x-1\right)\)

\(=\left(2001+1999\right)\left(2001-1\right)=4000.2000=8000000\)

nguyen Tung Lam
Xem chi tiết
viet
31 tháng 7 2015 lúc 8:47

A =19^3+3.19^2+3.19+2

A =6859+1083+59

A =8001

 

Nguyễn nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 19:26

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

dang thai nhu
Xem chi tiết
Nguyễn Thị Thanh Duyên
26 tháng 9 2015 lúc 20:23

a)  15 . 91,5 + 150 . 0,85

  = 15 . 91,5 + 15 . 8,5

  = 15 ( 91,5 + 8,5 )

  = 15 . 100 = 1500

b)  x(x - 1) - y(1 - x)

  = x(x - 1) + y(x - 1)

  = (x + y) (x - 1) 

 Giá trị của biểu thức tại x = 2001 và y = 1999 là :

   (2001 + 1999) (2001 - 1) = 4000 . 2000 = 8000000

Thanh Hải
Xem chi tiết
Akai Haruma
22 tháng 10 2023 lúc 8:15

Lời giải:
$A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{1998}{1999}=\frac{1.2.3....1998}{2.3.4...1999}=\frac{1}{1999}$

Phươngg Phương
Xem chi tiết
Nguyễn Ngọc Bảo Ngân
30 tháng 12 2020 lúc 20:34

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

Khách vãng lai đã xóa
phan ngọc ánh
Xem chi tiết
Minh Nguyen
8 tháng 4 2020 lúc 15:50

a) Thay x = -1 và y = 3 vào A, ta được :

A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3

A = -2.2 + 1 + 4

A = -4 + 5

A = 1

b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

*Thay x =-1 và y = 3 vào biểu thức :

Phần này bạn sẽ làm ý như câu a vậy :33

*Thay x = -1 và y =-3 vào A, ta được :

A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)

A = -2.(-4) + 1 + 7 + 3

A = 8 + 11

A = 19

Khách vãng lai đã xóa