Tổng sau có phải là số chính phương không?13+23+33
Bài 2: Các số sau có phải là số chính phương không?
1. 13 + 23 ; 13 + 23 + 33 ; 13 + 23 + 33 + 43 ; 13 + 23 + 33 + 43 + 53
2. 1262 + 1 ; 100! + 8 ; 1012 - 3 ; 1010 + 7 ; 11 + 112 + 113
3. 32 + 22 b) 62 + 82 c) 400 - 162 d) 2.3.45.7.9.11.13 + 2018 e) 13 + 23
4. m) 1262 + 1 n) 100!+ 8 p) 1012 - 3 q) 1010 + 7 k) 11 + 112 + 113
Mọi người trình bày đầy đủ hộ mình ạ!
Nhanh giúp ạ
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
Bài 3:
32 + 22 = 9 + 4 = 13 (không phải là số chính phương)
62 + 82 = 36 + 64 = 100 = 102 (là số chính phương)
2.3.45.7.9.11.13 + 2018 = \(\overline{...0}\) + 2018 = \(\overline{..8}\) (không phải là số cp)
Bài 4 giống bài 2
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ 0, 1, 4, 9, 16, ...). Mỗi tổng sau có là một số chính phương không?
13 + 23 + 33
13 + 23 + 33 = 1 + 8 + 27 = 36.
Mà 36 = 62 là SCP (vì là bình phương của 6) nên 13 + 23 + 33 là SCP
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ 0, 1, 4, 9, 16, ...). Mỗi tổng sau có là một số chính phương không?
13 + 23 + 33 + 43
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100.
Mà 100 = 102 là SCP (vì là bình phương của 10) nên 13 + 23 + 33 + 43 là SCP.
Vậy mỗi tổng đã cho đều là số chính phương.
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ 0, 1, 4, 9, 16, ...). Mỗi tổng sau có là một số chính phương không?
13 + 23
(SCP là viết tắt của số chính phương)
Ta có: 13 = 1; 23 = 8; 33 = 27; 43 = 64.
● 13 + 23 = 1 + 8 = 9.
Mà 9 = 32 là SCP (vì là bình phương của 3) nên 13 + 23 là SCP.
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a) 3 2 + 4 2
b) 13 2 - 5 2
c) 1 3 + 2 3 + 3 3 + 4 3
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a, 3 2 + 4 2
b, 13 2 - 5 2
c, 1 3 + 2 3 + 3 3 + 4 3
a, 3 2 + 4 2 = 25 = 5 2 là số chính phương.
b, 13 2 - 5 2 = 144 = 12 2 là số chính phương.
c, 1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2 là số chính phương.
Tổng sau đây có phải là số chính phương ko:
23! + 3
1x2x3x4x5x..x23+3
Vì 1x2x3x4x5x...x23 có chứa thừa số 5 , 10 , 15 , 20 suy ra tận cùng của tích sẽ là 0 . Vậy 1x2x3x...x23+3 sẽ có tận cùng bằng 3 ( vì 0+3=3) Mà tận cùng của các số chính phương phải là 0 , 1 , 4 , 8 , 6 vậy 23!+3 ko phải là số chính phương .
* 23! là 23 giai thừa tức là tích của các số từ 1 đến 23 nhé mong bạn hiểu , ko cần ghi vào bài đâu
không thực hiện phép tính để tính hãy xét xem tổng hiệu có phải số chính phương không?
11 . 13 . 15 .17 +23
15 . 16 .17 . 18 - 38
Câu hỏi của phạm thị vân anh - Toán lớp 6 - Học toán với OnlineMath
Mỗi Tổng Sau Có Là Số Chính Phương Không?
A)32+33
B)52+62
A) \(3^2+3^3=9+27=36=6^2\) (là số chính phương)
b) \(5^2+6^2=25+36=61\) (không là số chính phương)
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?