Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Từ Lê Thảo Vy
Xem chi tiết
Nguyễn Lâm Tuấn
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 12:01

Đặt \(A=\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}\)

\(7A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{99}}\)

\(\Rightarrow7A-A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow6A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow A=\dfrac{1}{6}\left(\dfrac{1}{7}-\dfrac{1}{7^{100}}\right)\)

Xem chi tiết
Tuấn Khải
Xem chi tiết
Đoàn Đức Hà
4 tháng 7 2021 lúc 16:43

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)

\(6A=7^{2008}-1\)

\(A=\frac{7^{2008}-1}{6}\)

Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).

Khách vãng lai đã xóa
Đoàn Đức Hà
4 tháng 7 2021 lúc 16:43

\(D=7+7^3+7^5+7^7+...+7^{99}\)

\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)

\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)

\(48D=7^{101}-7\)

\(D=\frac{7^{101}-7}{48}\)

Tương tự, \(E=\frac{2^{9011}-2}{3}\)

Khách vãng lai đã xóa
Nguyễn
Xem chi tiết
Akai Haruma
13 tháng 1 lúc 23:33

Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$

$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$

$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$

$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$

$\Rightarrow T< \frac{1}{36}$

Cao Thị Thùy Linh
Xem chi tiết
Bui Ngoc Linh
Xem chi tiết
Mạnh Lê
3 tháng 8 2017 lúc 20:37

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)

\(B=\frac{1}{3}-\frac{1}{111}\)

\(B=\frac{12}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)

\(C=7.\frac{3}{35}\)

\(C=\frac{3}{5}\)

Trần Phúc
3 tháng 8 2017 lúc 20:50

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)

\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)

\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)

Đức Phạm
3 tháng 8 2017 lúc 21:16

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\) 

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(B=\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}\)

\(\Rightarrow C=\frac{3}{5}\)

Bé Bom nhóm Pink Star
Xem chi tiết
Hoàng Thị Ngọc Mai
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 14:29

Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha

1, 7A = 7+7^2+7^3+....+7^2008

6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1

=> A = (7^2008-1)/6

Tk mk nha

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)

\(\Rightarrow6A=7^{2008}-1\)

\(\Rightarrow A=\frac{7^{2008}-1}{6}\)

huynh van duong
13 tháng 1 2018 lúc 14:38

4b=4+4^2+4^3+...+4^101

4b-b=(4+4^2+...+4^101)-(1+4+4^2+...+4^100)

3b=4^101-1

b=(4^101-1):3