\(\left(n+10\right).\left(n+15\right)\hept{\begin{cases}.\\.\\.\end{cases}}2\)
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\) vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\) nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
1.Giải hệ pt
1.\(\hept{\begin{cases}x^2-xy+y^2=1\\2y^3=x+y\end{cases}}\) 2.\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=15\\y+y^4=x\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=2\\\left(x+y\right)\left(x^4+y^4+x^2y^2-2xy\right)=2x^5\end{cases}}\) 4.\(\hept{\begin{cases}x^2+3y^2=1\\\left(x+y\right)^3=x\end{cases}}\)
5.\(\hept{\begin{cases}4x\left(x^2+y^2\right)=15\\\left(x-y\right)^4=2y\end{cases}}\) 6.\(\hept{\begin{cases}\left(xy+1\right)\left(x^2y^2+1\right)=15y^3\\y^3+1=xy^4\end{cases}}\)
7.\(\hept{\begin{cases}x^2+y^2+x+y=xy\\2\left(x+y\right)^3=x+y+2\end{cases}}\) 8.\(\hept{\begin{cases}x^2+y^4=y^2\left(x+1\right)\\2y^4=x+y^2\end{cases}}\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
Giải hpt
a/\(\hept{\begin{cases}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{cases}}\)
b/ \(\hept{\begin{cases}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{cases}}\)
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
\(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2x-\left(m+3\right)=y\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-m\left(2x-\left(m+3\right)\right)=3m-1\\2x-\left(m+3\right)=y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-2mx+m\left(m+3\right)=3m\\y=2x-\left(m+3\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(-m-1\right)=-m^2-2m\\y=2x-\left(m+3\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(m+1\right)=\left(m+1\right)^2\\y=2x-\left(m+3\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x=m+1\Rightarrow y=m-3\\m=-1\Rightarrow x;y\left(\text{loai}\right)\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=m+1\\y=m-3\end{cases}}\)
\(\Rightarrow x^2+y^2< 4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2< 4\)
\(\Leftrightarrow8m< 12\)
\(\Leftrightarrow m< 3/2\)
*P/s: T trả đấy!*
rut gọn biểu thức sau
a)\(3x^2-2x\left(5+1.5x\right)+10\)
b)\(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
c)\(\hept{\begin{cases}\\\end{cases}}2x-3\left(x-1\right)-5\orbr{\begin{cases}\\\end{cases}x-4\left(3-2x\right)+10\orbr{\begin{cases}\\\end{cases}}}\)
giải hệ phương trình :\(\hept{\begin{cases}xy+2x+3y=10\\\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(y+1\right)\left(y+3\right)}=\frac{2}{15}\end{cases}}\)
Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)
Đặt \(x+2=a,y+1=b\)
Ta có hệ mới
\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)
Lấy (1).(2)
=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)
Nếu a,b khác dấu
=> \(VT\le-4\)(loại)
Nếu a,b cùng dấu
=> \(VT\ge4\)
Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5
=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)
Vậy x=1,y=2 hoặc x=-7,y=-6
bn nào giải thick cho mk đoạn cùng dấu và trái dấu với
tại sao cùng dấu lại >=4
trái dấu lại<=4
và làm thế nào để tính a,b