2+5+8+......+95+98
1/2×5+1/5×8+1/8×11+...+1/92×95+1/95×98
=1/3(3/2*5+3/5*8+...+3/95*98)
=1/3(1/2-1/5+1/5-1/8+...+1/95-1/98)
=1/3*96/196
=32/196
=8/49
A=1/2*5 + 1/5*8 + 1/8*11 + ... + 1/92*95 + 1/95*98
Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)
\(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)
Ta có: \(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(=\dfrac{8}{49}\)
Tính A:
A=2/2×5+2/5×8+2/8×11+...+2/92×95+2/95×98
\(A=\frac{2}{2\cdot5}+\frac{2}{5\cdot8}+\frac{2}{8\cdot11}+...+\frac{2}{92\cdot95}+\frac{2}{95\cdot98}\)
\(A=\frac{2}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right]\)
\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right]\)
\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{98}\right]=\frac{2}{3}\left[\frac{49}{98}-\frac{1}{98}\right]=\frac{2}{3}\cdot\frac{48}{98}=\frac{2}{3}\cdot\frac{24}{49}=\frac{2}{1}\cdot\frac{8}{49}=\frac{16}{49}\)
\(A=\frac{2}{2.5}+\frac{2}{5.8}+...+\frac{2}{92.95}+\frac{2}{95.98}\)
\(=\frac{2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{2}{3}.\frac{24}{49}\)
\(=\frac{16}{49}\)
#)Giải :
\(A=2-\frac{2}{5}+\frac{2}{5}-\frac{2}{8}+\frac{2}{8}-\frac{2}{11}+...+\frac{2}{95}-\frac{2}{98}\)
\(A=2-\frac{2}{98}\)
\(A=1\frac{48}{49}=\frac{97}{49}\)
#~Will~be~Pens~#
\(A=1/2*5+1/5*8+1/8*11+...+1/92*95+95*98\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
=> 3A = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{98}\)
=> 3A = \(\frac{24}{49}\)
=> A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)
Sửa 95.98 thành 1/(95.98) nhá
Ta có
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(3A=\frac{1}{2}-\frac{1}{98}\)
\(3A=\frac{49}{98}-\frac{1}{98}\)
\(3A=\frac{48}{98}=\frac{24}{49}\)
\(A=\frac{24}{49}\div3\)
\(A=\frac{8}{49}\)
Hok Tốt !!!!!!!!!!!!!!!!!!!!!!
2+5+8+.....+95+98
2+5+8+...+95+98
So so hang cua tong la:
(98-2):3+1=33( so )
Tong tren la:
(98+2).33:2=1650
số các số hạng là:
(98-2):3=32(so)
2+5+8+....+95+98
=(2+98).32:2
=1600
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
= [(2000-100)+1]: 2 x (2000+100)= 1996050
Tổng số các số hạng là :
( 2 000 - 100 ) : 1 + 1 = 1 901 ( số hạng )
Tổng của dãy số trên là :
( 2 000 + 100 ) x 1 901 : 2 = 1 996 050
Đáp số : 1 996 050
ủng hộ mk nha các bn ^-^
A=1/2×5+1/5×8+1/8×11+.......+1/92×95+1/95×98
Giúp em với ạ
Tính: A = 1/2 x 5 + 1/5 x 8 + 1/8 x 11 +..... + 1/92 x 95 + 1/95 x 98
cả lời giải dùm nha
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{24}{49}\)
\(A=\frac{8}{49}\)
Vậy ...........
Tính hợp lí:
2/5×8+2/8×11+....+2/95×98+2/98×1011/3×1/15×1/35×...×1/99992^2/1×3×3^2/2×4×4^2/3×5×...×99^2/98×100