Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhung Nguyễn
Xem chi tiết
Nhung Nguyễn
Xem chi tiết
Pham Van Hung
14 tháng 7 2018 lúc 14:16

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

Nhung Nguyễn
14 tháng 7 2018 lúc 15:56

chứng minh kiểu gì vậy

Nguyến Gia Hân
Xem chi tiết
Duyên Trương
Xem chi tiết
Bùi Thị Thảo
Xem chi tiết
♥✪BCS★Tuyết❀ ♥
3 tháng 2 2019 lúc 20:15

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

Trịnh Anh Tuấn
Xem chi tiết
Trịnh Anh Tuấn
25 tháng 7 2017 lúc 18:44

Vuông taị a đường cao ah nha

Võ Thị Quỳnh Giang
25 tháng 7 2017 lúc 19:34

a) xét tg AHC có:  I là t/đ của HC(gt), E là t/đ của AH(gt)=> EI là đg trung bình của tg AHC=>EI//AC và EI=1/2 .AC

mặt khác:BK//AC( vì cùng vuông góc vs AB)

xét tg BEIK có BK//EI(cùng // AC) và BK=EI =1/2.AC

   =>tg BEIK là hbh => BE//IK(đpcm)

b)xét tg AHC có EI//AC(cmt) => HE/AE=HI/IC=>HE/HI=AE/IC   (1)

xét tg ABC và tg HEI có : BAC=EHI=90, ACB=EIH(đồng vị)  =>tg ABC đ.dạng vs tg HEI(g.g)=>AB/HE=AC/HI => HE/HI=AB/AC (2)

từ (1) và(2) => AE/IC=AB/AC

xét tg ABE và tg CAI có: AB/AC=AE/IC (cmt)và BAE=ICA(cung phụ vs EAC)

=>tg ABE đ.dạng vs tg CAI(c.g.c)=>ABE=CAI,mà CAI= AIE( slt)=>ABE=AIE  (*)

 mặt khác : EBK=EIK(vì tg BEIK là hbh)   (**)

từ (*) và (**)=>ABE+EBK=AIE+EIK

                 <=>ABK=AIK,mà ABK=90 nên AIK=90=>AI vuông góc vs IK

Mèo Méo
Xem chi tiết
Phan Ngọc Thùy Linh
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 20:59

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của BA

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}\)

Ta có: DE//BC

M\(\in\)BC

Do đó: BM//DE

Ta có: \(DE=\dfrac{BC}{2}\)

\(CM=MB=\dfrac{CB}{2}\)

Do đó: DE=CM=MB

Xét tứ giác BDEM có

DE//MB

DE=MB

Do đó: BDEM là hình bình hành

c: Ta có: ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔABC

=>\(MD=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MD=HE

Ta có: ED//BC

M,H\(\in\)BC

DO đó: ED//MH

Xét tứ giác DHME có

MH//DE
nên DHME là hình thang

Hình thang DHME có DM=HE

nên DHME là hình thang cân

Mai Gia Hưng
12 tháng 12 2023 lúc 21:00

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC