Cho hình thang ABCD có đáy AB và CD. AC và BD cắt nhau tại M. Chứng
minh: AB/CD=AM/MC=BM/MD
Cho hình thang ABCD (AB là đáy nhỏ, CD là đáy lớn). Đoạn thẳng AC và BD cắt nhau tại điểm O. Trên đoạn thẳng AB lấy điểm M sao cho AM = BM. Đường thẳng MO cắt đáy lớn CD ở điểm N. Chứng tỏ rằng NC = ND
Hình thang cân ABCD (AB//CD) có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3MO, đáy lớn CD = 5,6cm. Tính độ dài đoạn thẳng MN và đáy nhỏ AB.
Vì ABCD là hình thang cân có AB // CD nên:
AC = BD (1)
Xét ΔADC và ΔBCD, ta có:
AC = BD (chứng minh trên)
AD = BC (ABCD cân)
CD cạnh chung
Suy ra: △ ADC = △ BCD (c.c.c)
Suy ra : ∠ (ACD) = ∠ ( BDC)
Hay ∠ (OCD) = ∠ ( ODC)
Suy ra tam giác OCD cân tại O
Suy ra: OD = OC (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: OA = OB
Ta có:
Mà OA = OB ⇒ OM = ON
Lại có: MD = 3MO (gt) ⇒ NC = 3NO
Trong ΔOCD, ta có:
Suy ra: MN // CD (Định lí đảo của định lí Ta-lét)
Ta có: OD = OM + MD = OM + 3OM = 4OM
Trong ΔOCD, ta có: MN // CD
Suy ra: Hệ quả định lí Ta-lét)
Suy ra:
Suy ra: MN = 1/4 CD = 1/4 .5,6 = 1,4 (cm)
Ta có: MB = MD (gt)
Suy ra: MB = 3OM hay OB = 2OM
Lại có: AB // CD (gt) suy ra: MN // AB
Ta có: MN // AB, áp dụng hệ quả định lý Ta – let ta được:
(Hệ quả định lí Ta-lét)
Suy ra:
Vậy: AB = 2MN = 2.1,4 = 2,8(cm)
Hình thang cân ABCD (AB//CD) có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3MO, đáy lớn CD = 5,6cm. So sánh độ dài đoạn thẳng MN với nửa hiệu của CD và AB
Cho hình thang cân ABCD đáy AB, CD có 2 đường chéo AC và BD cắt nhau tại O. Gọi M và N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3MO, đáy lớn CD = 12cm. a/ Tính độ dài MN và đáy nhỏ AB. b/ So sánh độ dài MN với nửa hiệu độ dài của CD và AB.
Cho hình thang cân ABCD, AB // CD, AC < CD, MC = MD. AM cắt BD tại E, BM cắt AC tại F
a) CMR: tam giác MAD = tam giác MBC
b) tam giác MED = tam giác MFC
Cho hình thang cân ABCD có AB//CD, AB<CD, hai đường cheó AC và BD cắt nhau tại P , hai cạnh bên AD và BC kéo dài cắt nhau tại Q.C/M: PQ là đường trung trực của hai đáy hình thang cân ABCD
Xét ΔQDC có AB//DC
nên QA/AD=QB/BC
mà AD=BC
nên QA=QB
QA+AD=QD
QB+BC=QC
mà QA=QB và AD=BC
nên QD=QC
Xét ΔABD và ΔBAC có
AB chung
BD=AC
AD=BC
=>ΔABD=ΔBAC
=>góc DBA=góc BAC
=>góc PAB=góc PBA
=>PA=PB
PA+PC=AC
PB+PD=BD
mà PA=PB và AC=BD
nên PC=PD
PA=PB
QA=QB
=>PQ là trung trực của AB
PD=PC
QD=QC
=>PQ là trung trực của DC
Cho hình thang ABCD (AB//CD) có AB=7,5;CD=12 gọi M là trung điểm của CD, AM cắt BD tại E và BM cắt AC tại F.Chứng minh rằng
a,EF//AB
b,Tính EF
Cho hình thang ABCD (AB//CD) có AB=7,5;CD=12 gọi M là trung điểm của CD, AM cắt BD tại E và BM cắt AC tại F.Chứng minh rằng
a,EF//AB
b,Tính EF
Cho hình thang ABCD (AB//CD) có AB=7,5;CD=12 gọi M là trung điểm của CD, AM cắt BD tại E và BM cắt AC tại F.Chứng minh rằng
a,EF//AB
b,Tính EF