cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
a+b>=2căn ab
b+c>=2*căn bc
a+c>=2*căn ac
=>(a+b)(b+c)(a+c)>=2*2*2*căn ab*bc*ac=8
Cho a,b,c là các số thực dương thỏa mãn: a + b + c + ab + bc + ca = 6. Chứng minh rằng : \(\dfrac{a^3}{b}\)+ \(\dfrac{b^3}{c}\) +\(\dfrac{c^3}{a}\) ≥ 3
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)
Mặt khác ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Từ đó suy ra đpcm
Cho a, b, c là các số thực dương thỏa mãn a+b+c=3 Chứng minh rằng: a2 +b2 + c2 +ab+bc+ca >= 6
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh rằng:
a a 2 + b c + b b 2 + c a + c c 2 + a b ≤ 3 2
Từ điều kiện đề bài ta có a b + b c + c a a b c = 3 ⇔ 1 a + 1 b + 1 c = 3
Áp dụng hai lần bất đẳng thức Côsi cho hai số dương, ta có:
a 2 + b c ≥ 2 a 2 . b c = 2 a b c ⇒ a a 2 + b c ≤ 2 2 a b c = 1 2 b c 1 b . 1 c ≤ 1 2 1 b + 1 c ⇒ a a 2 + b c ≤ 1 4 1 b + 1 c
Tương tự ta có:
b b 2 + c a ≤ 1 4 1 c + 1 a ; c c 2 + a b ≤ 1 4 1 a + 1 b ⇒ a a 2 + b c + b b 2 + c a + c c 2 + a b ≤ 1 2 1 a + 1 b + 1 c = 3 2 .
Cho các số thực không âm a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng (a + b)(b + c)(c + a) > 8
Cho a,b,c là ba số dương thỏa mãn (a+b)(b+c)(c+a)=1. Chứng minh ab+bc+ca ≤ \(\dfrac{3}{4}\)
Chứng minh bằng cách lớp 8 giúp mình ạ 🙏 🙏 🙏
Lời giải:
Áp dụng BĐT Cô-si:
$(a+b+c)(ab+bc+ac)\geq 9abc$
$\Rightarrow abc\leq \frac{1}{9}(a+b+c)(ab+bc+ac)$. Do đó:
$(a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc$
$\geq (ab+bc+ac)(a+b+c)-\frac{(ab+bc+ac)(a+b+c)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)$
$\Rightarrow (a+b+c)(ab+bc+ac)\leq \frac{9}{8}(*)$
Mà cũng theo BĐT Cô-si:
$1=(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3$
$\Rightarrow a+b+c\geq \frac{3}{2}(**)$
Từ $(*); (**)\Rightarrow ab+bc+ac\leq \frac{9}{8}.\frac{1}{a+b+c}\leq \frac{9}{8}.\frac{2}{3}=\frac{3}{4}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$
cho a, b, c là 3 số dương thỏa mãn: \(a+b+c=3\). chứng minh rằng:
\(\frac{a^2+bc}{b+ca}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
BT: Cho a, b, c là các số thực dương thỏa mãn a ≥ b ≥ \(\dfrac{a+c}{2}\).
Chứng minh rằng :
\(\dfrac{a}{a+\sqrt{bc}}+\dfrac{b}{b+\sqrt{ca}}+\dfrac{c}{c+\sqrt{ab}}\) ≥ \(\dfrac{3}{2}\).