Cho tam giác ABC và tam giác DEF có AB//DE, BC//EF và AC//DF. Chứng minh AD, BE, CF đồng quy
tam giác DEF biết AB*EF = DE*BC và AC*DE = AB*DF . chứng minh tam giác DEF đồng dạng tam giác ABC
Cho tam giác ABC có M nằm trong tam giác. Tia AM,BM,CM cắt BC,AC,AB tại D,E,F. Gọi H là giao điểm của BE và DF, K là giao điểm của CF và DE. Chứng minh AD,BK và CH đồng quy
Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png
Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)
Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)
Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)
Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)
\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)
Vậy AD, BK và CH đồng quy (đpcm)
Cho 2 tam giác đều ABC và DEF mà A thuộc DF, E thuộc BC. Gọi I là giao của AC và EF, K là giao của AB và DE. Chứng minh:
a) Tam giác IFC và IAE đồng dạng; tam giác KDB và KAE đồng dạng.
b) BD // CF
cho tam giác abc nhọn có D,E,F lần lượt trên BC,AC,AB sao cho AD,BF,CF đồng quy tại H. Gọi M là giao điểm của BE và DF,N là giao điểm của CF và DE. Biết MD/MF=ED/EF;ND/NE=FD/FE cmr H là trực tâm của tam giác abc
Xét bài toán (II): Cho tam giác A'B'C' điểm D' thuộc cạnh BC sao cho \(\frac{A'B'}{A'C'}=\frac{D'B'}{D'C'}\).
Chứng minh: A'D' là phân giác góc A' của tam giác A'B'C'
Trên tia đối tia D'A' lấy điểm E' sao cho B'E'=B'A'
=> \(\Delta B'E'A'\)cân tại B'
=> \(\widehat{B'A'D'}=\widehat{B'E'D'}\)(1)
Xét tam giác: A'D'C' và tam giác E'D'B' có: \(\frac{E'B'}{A'C'}=\frac{D'B'}{D'C'}\)và \(\widehat{C'D'A'}=\widehat{B'D'E'}\)
=> Hai tam giác trên đồng dạng
=> \(\widehat{C'A'D'}=\widehat{B'E'D'}\)(2)
Từ (1), (2) => \(\widehat{C'A'D'}=\widehat{B'A'D'}\)=> A'D' là phân giác góc A của tam giác A'B'C'
Quay lại bài toán của bạn:
Xét tam giác EFD có: M thuộc FD và \(\frac{ED}{EF}=\frac{MD}{MF}\)
theo bài toán (II) đã chứng minh ở trên ta có: EM là phân giác góc \(\widehat{FED}\)
tương tự FN là phân giác góc \(\widehat{DFE}\)
mà EM cắt FN tại H
=> H là giao ba đường phân giác trong tam giác DEF
=> DA là phân giác trong góc FDE
Như vậy cần chứng minh H là trực tâm của tam giác ABC
Bài này có thể phải dùng tới định lí Menenaus hoặc Ceva. Em đã được học về các định lý này chưa?
Bài này mình cảm thấy hơi lạ. Theo chứng minh của anh/chị Nguyễn Linh Chi thì H chính là giao điểm 3 đường phân giác của ∆DEF. Nhưng nếu F,E là 2 điểm bất kỳ nằm trên AB,AC(E,F khác chân đường cao cao kẻ từ C và B) sao cho AD là phân giác góc FDE thì H vẫn là giao điểm 3 đường phân giác của ∆DEF. Nhưng khi đó thì H không phải là trực tâm của ∆ABC. Mong mọi người "khai sáng" cái đầu của mình giùm mình huhu mình không hiểu lắm về đề bài ạ :((
Có sai sót gì xin mọi người bỏ qua ạ.
Cho tam giác ABC và tam giác DEF sao cho AB=DE;AC=DF . Chứng minh góc A > góc D <=> BC > EF
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
Cho tam ABC đều và tam giác DEF đều có đỉnh A nằm trên DF;E nằm trên cạnh BC. AC cắt EF tại I ,AB cắt DE tại K.
a,c/m tam giác IFC đồng dạng tam giác IAE
b, C/m:BD//CF
Cho tam giác ABC nhọn nội tiếp đường tròn (O). H là trực tâm của tam giác ABC.
AD là đường kính của (O). E thuộc AC sao cho HE//BC.
1). Chứng minh rằng các đường thẳng BH và DE cắt nhau trên (O)
2). Gọi F là giao điểm của các đường thẳng EH và AB. Chứng minh rằng A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF
3). Gọi I là tâm đường tròn nội tiếp của tam giác DEF. Chứng minh rằng BE, CF và IH đồng quy.
1). Gọi DE cắt (O) tại P khác D. Do AD là đường kính của (O), suy ra A P D ^ = 90 0 , mà A H E ^ = 90 0 ( do H E ∥ B C ⊥ H A ), nên tứ giác APEH nội tiếp.
Ta có A P H ^ = A E H ^ (góc nội tiếp)
= A C B ^ H E ∥ B C = A P B ^ (góc nội tiếp)
⇒ P H ≡ P B
2). Ta có H P ⊥ A C ⇒ A E H ^ = A H P ^ = A E P ^
Suy ra EA là phân giác ngoài đỉnh E của tam giác DEF
Tương tự FA là phân giác ngoài đỉnh F của tam giác DEF
Suy ra A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF
3). Do I là tâm nội tiếp nên EI là tia phân giác trong.
Mà EA là tia phân giác ngoài, suy ra E I ⊥ A C ⇒ E I ∥ H B
Tương tự F I ∥ H C ; E F ∥ B C ⇒ Δ I E F v à Δ H B C có cạnh tương ứng song song, nên BE; CF và IH đồng quy.
cho tam giác ABC có 3 góc nhọn AB<AC. AD,BE,CF là các đường cao. EF giao với BC tại N.Đường thẳng D//EF và cắt AB,AC tại X,Y
a, chứng minh BCEF ,ACDF nội tiếp
b, EB là phân giác góc DEF và AX/AY bằng AC/AB
a) Ta có: \(\angle BEC=\angle BFC=90\Rightarrow BCCEF\) nội tiếp
Ta có: \(\angle AFC=\angle ADC=90\Rightarrow ACDF\) nội tiếp
b) Dễ dàng chứng minh được AEHF,EHDC nội tiếp
\(\Rightarrow\angle FEH=\angle FAH=\angle FCB=\angle HED\)
\(\Rightarrow EB\) là phân giác \(\angle DEF\)
Vì \(EF\parallel XY\) \(\Rightarrow\dfrac{AX}{AY}=\dfrac{AF}{AE}\left(1\right)\)
Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AFE=\angle ACB\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AX}{AY}=\dfrac{AC}{AB}\)