Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kẻ Huỷ Diệt
Xem chi tiết
Hảải Phongg
Xem chi tiết
Luong Ngoc Quynh Nhu
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Hảải Phongg
22 tháng 1 2017 lúc 20:00

giải zõ hộ

Nguyễn Thị Huyền Diệp
Xem chi tiết
Thơ Anh
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 3:18

Lời giải:

PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$

Coi đây là pt bậc 2 ẩn $x$. Khi đó, để pt có nghiệm nguyên thì:

$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t$ là số tự nhiên

$\Leftrightarrow 49y^2+28y+112=t^2$

$\Leftrightarrow (7y+2)^2+108=t^2$

$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$

Đến đây là dạng pt tích đơn giản. Bạn chỉ cần xét các TH thôi với $t+7y+2>0$ và $t+7y+2, t-7y-2$ có cùng tính chẵn lẻ.

 

Tấn Sang Nguyễn
Xem chi tiết
Akai Haruma
2 tháng 12 2023 lúc 17:34

Lời giải:
$x^2-3x+9=-xy+2y$

$\Leftrightarrow x^2+x(y-3)+(9-2y)=0$

Coi đây là pt bậc 2 ẩn $x$. PT có nghiệm nguyên khi:

$\Delta=(y-3)^2-4(9-2y)=m^2$ với $m$ là stn.

$\Leftrightarrow y^2+2y-27=m^2$
$\Leftrightarrow (y+1)^2-28=m^2$

$\Leftrightarrow 28=(y+1)^2-m^2=(y+1-m)(y+1+m)$

Do $y+1-m, y+1+m$ là các số nguyên và có cùng tính chẵn lẻ, $y+1-m\leq y+1+m$ với $m$ tự nhiên nên:

TH1: $y+1-m=2; y+1+m=14$

$\Rightarrow y=7$. Thay vào pt và giải tìm x thôi.

TH2: $y+1-m=-14; y+1+m=-2$

$\Rightarrow y=-9$. Đến đây thay vào pt ban đầu và giải tìm $x$.

Sakura
Xem chi tiết
Trang Đỗ Mỹ
Xem chi tiết
Đặng Phan Nhật Huy
17 tháng 5 lúc 23:10

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp

 

Hoàng Mai Phương
Xem chi tiết
Đoàn Đức Hà
26 tháng 8 2021 lúc 17:43

\(x^2-2y^2-xy+2x-y-2=0\)

\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)

Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).

Ta có bảng giá trị: 

x+y+1-3-113
x-2y+1-1-331
x-10/3 (l)-8/3 (l)2/3 (l)4/3 (l)
y    

Vậy phương trình đã cho không có nghiệm nguyên. 

Khách vãng lai đã xóa
chau duong phat tien
Xem chi tiết