P(x)=2x4-x-2x3+1
Q(x)=-2x4+x2+5
Tính P(x)+Q(x) bằng 2 cách
Giúp mik với ạ!
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
Cho các đa thức:
P(x) = 2x4 – x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = –2x4 + x2 + 5
Tính P(x) + Q(x) + H(x) và P(x) – Q(x) – H(x).
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
P(x) = 2x4– 2x3 – x +1
Q(x) = – x3 + 5x2+ 4x
H(x) = –2x4 + x2+ 5
Đặt và thực hiện các phép tính ta có:
Vậy: P(x) + Q(x) + H(x) = -3x3+ 6x2 + 3x + 6.
P(x) - Q(x) - H(x) = 4x4 - x3 - 6x2 – 5x – 4.
Cho các đa thức:
P(x) = 2x4 – x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = –2x4 + x2 + 5
Tính P(x) + Q(x) + H(x) và P(x) – Q(x) – H(x).
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
P(x) = 2x4– 2x3 – x +1
Q(x) = – x3 + 5x2+ 4x
H(x) = –2x4 + x2+ 5
Đặt và thực hiện các phép tính ta có:
Vậy: P(x) + Q(x) + H(x) = -3x3+ 6x2 + 3x + 6.
P(x) - Q(x) - H(x) = 4x4 - x3 - 6x2 – 5x – 4.
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
Với x R. Chứng minh rằng: 2x4 + 1 >= 2x3 + x2
một đề bài lố bịch, một câu tl ngớ ngẩn, thế này mà olm có câu:
không có học trò dốt
mà chỉ có thầy chưa giỏi
em xin đổi lại là:
95% hs k biêt hoc toán
95% thầy cô trẻ dạy toán, rất giỏi toán
( vì điểm thi đh ở đhsp ngành toán lấy rất cao,em chỉ nói lên sự thật mong olm đừng trừ điểm)
Đề bài chính xác là CMR : 2x4 + 1 > 2x3 + 2x2 với mọi x thuộc R
\(\Leftrightarrow2x^4-2x^3-x^2+1\ge0\)
\(\Leftrightarrow2x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-x-1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x+x^3-1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x^2-1\right)+\left(x-1\right)\left(x^2+x+1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x\left(x+1\right)+x+1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Có \(\left(x-1\right)^2\ge0\forall x\in R\)
\(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2\ge0\)
(đpcm)
F(x)=-x+2+5x2+2x4+2x3+x2+x4
G(x)=-x2+x3+x-6-3x3-4x2-3x4
a. thu gọn các đa thức trên
\(F\left(x\right)=3x^4+2x^3+6x^2-x+2\)
\(G\left(x\right)=-3x^4-2x^3-5x^2+x-6\)
F(x)=-x+2+5x2+2x4+2x3+x2+x4
F(x)= ( 5x2+x2) + ( 2x4 +x4) +2x3-x+2
F (x) = 6x2 + 3x4 +2x3-x+2
G(x) = -x2+x3+x-6-3x3-4x2-3x4
G (x) = ( -x2 -4x2) + ( x3 -3x3) -3x4 +x-6
G (x) = -5x2 - 2x3 -3x4 +x-6
Giải phương trình:
a) x4 - 2x3 + x2 - 4x +4 = 0
b) x4 + 2x3 - 3 = 0
c) 2x4 - 100x + 98 = 0
d) (x + 1)(x + 2)(x + 3)(x + 4) = 24
d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến P(x)=4x5-3x2+3x-2x3-4x5+x4-5x+1+4x2 Q(x)=x7-2x6+2x3-2x4-x7+x5+2x6-x+5+2x4-x5 b)tính p(x)+Q(x);P(x)-Q(x)
a: P(x)=4x^5-4x^5-2x^3+x^4-3x^2+4x^2+3x-5x+1
=x^4-2x^3+x^2-2x+1
Q(x)=x^7-x^7-2x^6+2x^6+2x^3-2x^4+2x^4+x^5-x^5-x+5
=2x^3-x+5
b: P(x)+Q(x)
=x^4-2x^3+x^2-2x+1+2x^3-x+5
=x^4+x^2-3x+6
P(x)-Q(x)
=x^4-2x^3+x^2-2x+1-2x^3+x-5
=x^4-4x^3+x^2-x-4