x+1/x^2. tìm x để giá trị biểu thức không âm
Cho biểu thức A=x^2+3/x-2
a)Tìm điều kiện của x để giá trị của biểu thức A không xác định được
b)với nhứng giá trị nào của x thì biểu thức a nhận giá trị là số âm
c) Tìm tất cả các số nguyên x để biểu thức A nhận giá trị nguyên
Tìm các giá trị của x để biểu thức sau có giá trị âm: F=x^2-1/x^2
\(F=\frac{x^2-1}{x^2}=1-\frac{1}{x^2}\)
Để \(F< 0\)thì \(1-\frac{1}{x^2}< 0\Leftrightarrow\frac{1}{x^2}>1\Leftrightarrow1>x^2\Leftrightarrow x^2-1< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)< 0\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\Leftrightarrow-1< x< 1\)và \(x\ne0\)
\(F=\frac{x^2-1}{x^2}\)
Để F đạt giá trị âm
\(\Rightarrow\hept{\begin{cases}x^2-1< 0\\x^2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 1\\x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}-1< x< 1\\x\ne0\end{cases}}}\)
Vậy \(-1< x< 1;x\ne0\) thì C đạt giá trị âm
Tìm x sao cho:
a) Giá trị biểu thức 5x-7 không âm
b) giá trị biểu thức 4 x không nhỏ hơn giá trị biểu thức 2 x + 9
a) Ta có 5x - 7 không âm
=> 5x - 7 > hoặc = 0
<=> 5x > hoặc = 7
<=> x > hoặc = 7/5
b) Ta có 4x > hoặc = 2x + 9
<=> 2x > hoặc = 9
<=> x > hoặc = 4,5
( xin lỗi nha, hôm nay máy mình bị hâm nên viết có hơi khó hiểu, cậy tự dịch nhé)
a/ 5x - 7 > 0
5x > 7
x > 7/5 \(\frac{5}{7}\)
b/ 4x > 2x + 9
2x > 9
x > 9/2
Cho biểu thức: \(\frac{4x^3-6x^2+8x}{2x-1}\)
a) Tìm điều kiện xác định của biểu thức. Rút gọn biểu thức.
b) Tìm giá trị của x để giá trị của biểu thức có giá trị không âm.
a)Tìm các giá trị cua x để biểu thức A=(x-1)(x+3) có giá âm?
b)Khi nào thì biểu thức B=x^2-3x có giá trị dương?
b ) (a - 1)(a + 3) âm <=> (a - 1)(a + 3) > 0 => a - 1 và a + 3 trái dấu
Mặt khác : a + 3 > a - 1 => a + 3 > 0 và a - 1 < 0
<=> a > - 3 và a < 1
Vậy - 3 < a < 1
b ) x2 - 3x > 0 <=> x2 > 3x => x > 3
Vậy với x > 3 thì x2 - 3x dương
Tìm TXĐ của biểu thức, rút gọn biểu thức và tìm giá trị của x để biểu thức, thu dọn âm:
(\(\dfrac{x+2}{3x}\) + \(\dfrac{2}{x+1}\) - 3) : \(\dfrac{2-4x}{x+1}\) + \(\dfrac{x^2-3x-1}{3x}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
1)
TÌM CÁC GIÁ TRỊ CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ DƯƠNG
(1/2-2).(1/3-X)
2)TÌM CÁC GIÁ TRỊ CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ ÂM
A)X^2-2/5X B)E=X-2/X-6
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
a) Tam thức \(f\left(x\right)=x^2+2\left(m-1\right)+m^2-3m+4\) không âm với mọi giá trị x
b) Có bao nhiêu giá trị nguyên của tham số m để mọi x thuộc R biểu thức \(f\left(x\right)=x^2+\left(m+2\right)x+8m+1\) luôn nhận giá trị dương
c) Tìm tất cả các giá trị m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\forall x\in R\)
1) Tìm x để giá trị biểu thức (x+3)(1-x) không dương
2) Tìm x để giá trị biểu thức \(\frac{x+6}{5}-\frac{x-2}{3}\) không nhỏ hơn 2
1) (x+3)(1-x) < 0
(=) x+3>0 và 1-x<0
hoặc x+3 <0 và 1-x<0
(=)x>-3 và x>1 =) x>1
hoặc x<-3 và x>1 ( vô lý )
vậy x >1 thì .......vt nốt còn lại
2) (x+6)/5 - (x-2)/3 >2
(=) [3(x+6)] / 15 - [5(x-2)] / 15 >(2*15)/15
(=) [3(x+^) - 5(x-2)] / 15 >30/15
(=) 3(x+6) - 5(x-2) >30
(=)3x +18 -5x +10 -30 >0
(=) -2x -2 > 0
(=) -2x > 2
(=) x < -1
vậy với x < -1 thì ..........vt nốt còn lại
k cho a nha =)))
1) x+3=0 <=> x=-3
1-x=0 <=> x=1
Theo đề bài : A = (x+3)(1-x) <= 0
Xét các TH
1. x<=-3 => A <= 0
2. -3<x<1 => A >= 0, loại
3. x>=1 => A <= 0
=> x<=-3 hoặc x>=1