tính chu vi tam giác vuông ABC, biết AC = 4cm, BA = 3 cm, BC = 5cm, vuông tại A
Cho tam giác ABC. Kẻ AH vuông góc với BC (H nằm ngoài BC). Biết AB=8,5cm ; AH=4cm ; AC=5cm. Khi đó chu vi tam giác ABC bằng bao nhiêu cm?
Gọi I là giao điểm của AH và BC
Áp dụng định lí pytago trong tam giác vuông ABI ta có
BI2=AB2-AH2
BI2=8.52-42=56.25
BI=căn bậc hai của 56.25
Áp dụng định lí pytago trong tam giác vuông AIC ta có
IC^2=AC^2-AI^2
HC^2=5^2-4^2=9
HI=3
Ta co BI+IC=BC
7.5+3=10.5
Chu vi của tam giác ABC là 8.5+5+10.5=24
Baì 1: Cho tam giác ABC biết AB= 4 cm, AC= 3 cm, BC= 5cm
a. Chứng minh: Tam giác ABC là tam giác vuông
b. Tính chu vi của tam giác ABC
a) Theo đề bài ta có :
BC2 = 52 = 25
AB2 + AC2 = 42 + 32 = 16 + 9 = 25
=> BC2 = AB2 + AC2 ( định lý Pytago đảo )
=> Tam giác ABC vuông ( đpcm )
b) \(C_{\Delta ABC}=AB+AC+BC=3+4+5=12cm\)
Tam giác ABC vuôn tại B với AB= 3cm, BC=4cm, AC=5cm. Kéo dài BC về phía B một đoạn BD sao cho tam giác abc vuông góc ở A, khi đó DT tăng thêm 2,4 cm2 . . Tính cạnh AD và chu vi TG DAC
Bài 4:Cho tam giác ABC vuông tại B, biết AB = 4cm, BC = 6cm.
a) Tính AC, chu vi tam giác ABC
a: \(AC=\sqrt{AB^2+BC^2}=2\sqrt{13}\left(cm\right)\)
\(C=AB+BC+AC=10+2\sqrt{13}\left(cm\right)\)
Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:
\(AC=\sqrt{4^2+6^2}=\sqrt{52}=2\sqrt{13}\)
Chu vi tam giác ABC là:
\(4+6+2\sqrt{13}=10+2\sqrt{13}\)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=5^2-3^2=16\)
hay CH=4(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=3^2+2.25^2=14.0625\)
hay AB=3,75(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=2,25+4=6,25(cm)
Chu vi của tam giác ABH là:
\(C_{ABH}=AB+BH+HA=3.75+2.25+3=9\left(cm\right)\)
Chu vi của tam giác ACH là:
\(C_{ACH}=AC+CH+AH=5+3+4=12\left(cm\right)\)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=3.75+6.25+5=15\left(cm\right)\)
Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b) Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.
Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.
a) Tính độ dài BC.
b) Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.
Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.
Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AC= 20cm, AH = 12 cm và BH = 5cm
∆AHB có ∠(AHB) =90°
Theo định lý pitago, ta có:
AB2=AH2+HB2
= 122+52=169
Vậy AB = 13 cm
∆AHC có ∠(AHC) =90o
Theo định lý pitago, ta có:
AC2=AH2+HC2
HC2=AC2-AH2=202-122=400-144=256
Vậy HC = 16cm
Ta có: BC = BH + HC = 5 +16 = 21cm
Chu vi tam giác ABC là: AB + AC + BC = 13 + 20 + 21 = 54cm
cho tam giác ABC vuông cân tại A,. Biết AB:AC=3:A chu vi tam giác ABC bằng 36 cm. Tính AB,AC,BC
Cho tam giác ABC vuông tại a a tính AC biết BC=13cm AB=5cm b tính BC biết AB=4cm AC=7cm
a, Áp dụng định lý Pitago:
`AB^2 + AC^2 = BC^2`
`=> 25 + AC^2 = 169`
`=> AC^2 = 144`
`=> sqrt 144 = 12`.
b. Áp dụng định lý Pytago ta có:
`AB^2 + AC^2 = BC^2`
`16 + 49 = BC^2`
`BC^2 = 65`
`BC = sqrt 65`.
Áp dụng định lí Pitago trong tam giác ABC vuông tại A
AC = BC2 + AB2
= 132 + 52
= \(\sqrt{194}\) = 14 cm
Áp dụng định lí Pitago trong tam giác ABC cân tại A
BC = AB2 + AC2
= 42 + 72
= \(\sqrt{65}\) = 8 cm