Tính tổng sau bằng cách nhanh nhất
1/2+1/6+1/12+1/20+1/30+1/42+1/56
Tính tổng sau bằng cách nhanh nhất.
a) 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
b) 17/9 + 19/3 + 14/6 + 7/13 + 10/6 + 1/9
= 1/1x2+1/2x3+...+1/7x8
= 1-1/2+1/2-...-1/8
= 1-1/8
=7/8
a/ \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}=\)
= 1-1/8 = 7/8
b/ = (17/9+1/9)+(19/13+7/13)+(14/6+10/6) = 18/9 + 26/13 + 24/6 = 2+2+4 = 8
\(a)\) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\)\(1-\frac{1}{8}\)
\(=\)\(\frac{7}{8}\)
Áp dụng công thức \(\frac{a}{b\left(b+a\right)}=\frac{1}{b}-\frac{1}{b+a}\) \(\left(a,b>0\right)\) nhé
Chúc bạn học tốt ~
tính bằng cách thuận tiện nhất
1/2+1/6+1/12+1/20+1/30+1/42+1/56
* Bạn tham khảo nhé *
1212 ++ 1616 ++ 112112 ++ 120120 ++ 130130 ++ 142142 ++ 156156
== 11×211×2 ++ 12×312×3 ++ 13×413×4 ++ 14×514×5 ++ 15×615×6 ++ 16×716×7 ++ 17×817×8
== 1111 −− 1212 ++ 1212 −− 1313 ++ 1313 −− 1414 ++ 1414 −− 1515 ++ 1515 −− 1616 ++ 1616 −− 1717 ++ 1717 −− 1818
== 1111 −− 1818
== 8888 −− 1818
== 78
Tính các tổng bằng cách nhanh nhất
a,\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\\ =\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\\ =\dfrac{1}{3}-\dfrac{1}{9}\\ =\dfrac{2}{9}\)
\(a,\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(=\dfrac{1}{212}\)
a) \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(=\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{3}-\dfrac{1}{9}=\dfrac{2}{9}\)
tính tổng sau bằng cách hợp lý
1/6+1/12+1/20+1/30+1/42+1/56
mọi người giúp mình với
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
= 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7 + 1/7X8
=1/2 - 1/3 + 1/3 -1/4 + 1/4 - 1/5 + 1/5 -1/6 + 1/6 - 1/7 + 1/7 - 1/8
= 1/2 - 1/8
= 4/8 - 1/8
= 3/8
Tính tổng sau bằng cách hợp lí :
1/6+1/12+1/20+1/30+1/42+1/56
Làm xong kết bạn với mình nhé!
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10
1/6+1/12+1/20+1/30+1/42+1/56
=1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
=1/2-1/8
=3/8
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
Bài 1. Tính cách nhanh nhất
1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2 giải giúp mình với
\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=\frac{-79}{90}\)
1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
= 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
= 1/90 - (1/1×2 + 1/2×3 + ... + 1/7×8 + 1/8×9)
= 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
= 1/90 - (1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=\frac{-79}{90}\)
I.Tính giá trị của các biểu thức sau bằng cách nhanh nhất :
A = 5/7.8/11 + 5/11.17/7 - 5/21.9/11
B = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63
C = 4^6.9^5+6^9.120/8^4.3^12-6^11
\(A=\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{8}{11}-\dfrac{5}{7}.\dfrac{2}{11}\)
\(A=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{8}{11}-\dfrac{2}{11}\right)\)
\(A=\dfrac{5}{7}.\dfrac{5+8-2}{11}\)
\(A=\dfrac{5}{7}.\dfrac{11}{11}\)
\(A=\dfrac{5}{7}.1=\dfrac{5}{7}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{35}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{63}\)
\(B=\dfrac{95}{72}\)
\(C=\dfrac{4^6.9^5+6^9.120}{8^4-3^{12}-6^{11}}\)
\(C=\dfrac{\left(2^2\right)^3.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(C=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(C=\dfrac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(C=\dfrac{2.6}{5.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
tính bằng cách thuận tiện:1/2+ 1/6+ 1/12+ 1/20 +1/30+ 1/42+ 1/56 +1/72+ 1/90
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
a) tính tổng A= 1/6+1/12+1/20+1/30+1/42+1/56
cho mình cả cách làm ạ^^
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
a) \(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}\)
\(=\)\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)