\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
Giai nhanh giup to!
Bài 1 : tìm x , biết :
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow\frac{x-4}{2015}-\frac{10-2x}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{x-4-\left(10-2x\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{\left(x+2x\right)-\left(4+10\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{3x-14}{2015}=\frac{1}{2015}\)
\(\Rightarrow\left(3x-14\right).2015=2015\)
\(\Rightarrow3x-14=1\) ( bớt cả 2 vế đi 2015 lần )
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
Giá trị x thỏa mãn:
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
x = 5
Thử lại :
5 - 4 / 2015 - 1/2015 = 0/2015
x-4/2015 - 1/2015=10-2x/2015
ĐÁP SỐ : x=5
Tìm x
\(\frac{x-1}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\frac{x-1}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow x-1-1=10-2x\)
\(\Rightarrow x-2=10-2x\)
\(\Rightarrow-2x+x=10+2\)
\(\Rightarrow-x=12\Rightarrow x=-12\)
Giá trị x thỏa mãn : \(\frac{x-4}{2015}\)-\(\frac{1}{2015}\)=\(\frac{10-2x}{2015}\)
mẫu số = nhau nên tử số = nhau
x-4 -1 = 10-2x
3x = 10+4+1
3x = 15
x = 5
Giá trị x thỏa mãn : \(\frac{x-4}{2015}\)-\(\frac{1}{2015}\)=\(\frac{10-2x}{2015}\)
mẫu số bằng nhau nên tử số cũng bằng nhau
x-4 -1 = 10-2x
3x = 10+4+1
3x = 15
x = 5
Giá trị của x thỏa mãn: \(\frac{x-4}{2015}\)-\(\frac{1}{2015}\)=\(\frac{10-2x}{2015}\)
=> x-4-1=10-2x hay x-4-1-10+2x=0
=> 3x-15=0
=> 3x=15
=> x=5
mình chắc chắn
Tìm x biết;
a) \(\frac{x-4}{2015}\)- \(\frac{1}{2015}\)= \(\frac{10-2x}{2015}\)
b) 2x + 2x+4 = 272
\(2^x+2^{x+4}=272\)
\(< =>2^x.\left(1+2^4\right)=272\)
\(< =>2^x.17=272\)
\(< =>2^x=272:17\)
\(< =>2^x=16\)
\(< =>2^x=2^4\)
\(=>x=4\)
a, x-4/2-15-1/2015=10-2x
qua điều trên:
Ta thấy rằng :
x-5=10-2x
=>
x=15-2x
=>
0=15-3x
=>x=5
Ta có:
2x+2x+4=272
=> 2x.(1+16)=272
=>2x.17=272
=>2x=16
=>x=4
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(< =>\frac{x-4-1}{2015}=\frac{10-2x}{2015}\)
\(< =>\frac{x-5}{2015}=\frac{10-2x}{2015}\)
\(< =>\frac{x-5}{2015}-\frac{10-2x}{2015}=0\)
\(< =>\frac{x-5-\left(10-2x\right)}{2015}=0\)
\(< =>\frac{x-5-10+2x}{2015}=0\)
\(< =>\frac{3x-15}{2015}=0\)
\(< =>3x-15=0\)
\(< =>3x=15\)
\(< =>x=5\)
Cho A= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2016}+\frac{1}{2017}\)
B =\(\frac{2016}{1}+\frac{2015}{2}+....+\frac{2}{2015}+\frac{1}{2016}\)
Tinh \(\frac{B}{A}\)giai ra giup minh voi
\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
\(B=2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
\(B=1+\left(\frac{2015}{2}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)\)
\(B=\frac{2017}{2017}+\frac{2017}{2}+...+\frac{2017}{2015}+\frac{2017}{2016}\)
\(B=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\frac{B}{A}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{2}{2017}}=2017\)
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)