cho phương trình : x2 – 2mx + m2– m – 3 = 0
Định m để phương trình có hai nghiệm thỏa : x12 + x22 = 6
ai trả lời nhanh nhất mik tick cho
Cho phương trình x2-4x+m2+3m=0 (m là tham số)
Tìm m để phương trình đã cho có hai nghiệm x1;x2 thỏa mãn x12+x22=6
Δ=(-4)^2-4(m^2+3m)
=16-4m^2-12m
=-4(m^2+3m-4)
=-4(m+4)(m-1)
Để phươg trình có hai nghiệm thì Δ>=0
=>-4(m+4)(m-1)>=0
=>(m+4)(m-1)<=0
=>-4<=m<=1
x1^2+x2^2=6
=>(x1+x2)^2-2x1x2=6
=>4^2-2(m^2+3m)=6
=>16-2m^2-6m-6=0
=>-2m^2-6m+10=0
=>m^2+3m-5=0
=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)
\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)
\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)
\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
Cho phương trình: x 2 – 2mx + 2m – 1 = 0. Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn 2 ( x 1 2 + x 2 2 ) − 5 x 1 . x 2 = − 1
A. m = 1
B. m = 5 4
C. m = −4
D. m = - 7 4
Cho phương trình ẩnx: x2–2(m+1)x+m2–2m–3=0(1)
a) Tìm m để phương trình (1) luôn có nghiệm .
b) Tìm giá trị của m để hai nghiệm x1; x2 của phương trình (1) thỏa hệ thức: x12 + x22 – x1x2 = 28
a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)
\(=4m^2+8m+4-4m^2+8m+12\)
=16m+16
Để phương trình luôn có nghiệm thì 16m+16>=0
hay m>=-1
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)
\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)
\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)
\(\Leftrightarrow m^2+14m-15=0\)
=>(m+15)(m-1)=0
=>m=1
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
Lời giải:
a)
Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$
b)
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)
Để $x_1^2+x_2^2-3x_1x_2=4$
$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$
$\Leftrightarrow (-2m)^2-5(2m-2)=4$
$\Leftrightarrow 4m^2-10m+6=0$
$\Leftrightarrow 2m^2-5m+3=0$
$\Leftrightarrow (m-1)(2m-3)=0$
$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)
cho phương trình x2+ 2mx -2m-6=0 (1), (với ẩn x, tham số m ). xác định giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x12 +x22 nhỏ nhất.
\(\Delta'=m^2+2m+6=\left(m+1\right)^2+5>0\) ;\(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-2m-6\end{matrix}\right.\)
Đặt \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(P=\left(-2m\right)^2-2\left(-2m-6\right)=4m^2+4m+12\)
\(P=\left(2m+1\right)^2+11\ge11\)
\(P_{min}=11\) khi \(m=-\dfrac{1}{2}\)
Cho phương trình x2 - 2mx + 2m - 1 = 0 (1). Tìm giá trị của m để hai nghiệm x1,x2 thỏa mãn: (x12 - 2mx1 + 3)(x22 - 2mx2 - 2) = 50
Ptr có nghiệm `<=>\Delta' > 0`
`<=>(-m)^2-2m+1 > 0`
`<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`
Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`
`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`
`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`
`<=>(1-2m+3)(1-2m-2)=50`
`<=>(4-2m)(-1-2m)=50`
`<=>-4-8m+2m+4m^2=50`
`<=>4m^2-6m-54=0`
`<=>4m^2+12m-18m-54=0`
`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}` (t/m)
Cho phương trình (ẩn x) : x 2 – 2mx – 4m – 4 = 0(1)
b) Tìm m để phương trình (1) có 2 nghiệm x 1 , x 2 thỏa mãn x 1 2 + x 2 2 - x 1 x 2 = 13 = 13
b) Gọi x 1 ; x 2 lần lượt là 2 nghiệm của phương trình đã cho
Theo hệ thức Vi-et ta có:
x 1 2 + x 2 2 - x 1 x 2 = x 1 + x 2 2 - 3x1 x2 = 4 m 2 + 3(4m + 4)
Theo bài ra: x 1 2 + x 2 2 - x 1 x 2 =13
⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0
∆ m = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10
Phương trình có 2 nghiệm phân biệt
Vậy với thì phương trình có 2 nghiệm x 1 ; x 2 thỏa mãn điều kiện x 1 2 + x 2 2 - x 1 x 2 = 13
Cho phương trình: x 2 – 2(m – 1)x + m 2 − 3m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x 1 ; x 2 thỏa mãn x 1 2 + x 2 2 = 8
A. m = 2
B. m = −1
C. m = −2
D. m = 1
Tìm các giá trị của m để phương trình x 2 – 2mx + 2m − 1 = 0 có hai nghiệm x 1 ; x 2 thỏa mãn x 1 2 + x 2 2 = 10
A. m = −2
B. m = 1
C. m = −3
D. Cả A và B
Phương trình x 2 – 2mx + 2m − 1 = 0 có a = 1 ≠ 0 và = 4 m 2 – 4 (2m – 1)
= 4 m 2 – 8 m + 4 = 4 ( m – 1 ) 2 ≥ 0 ; ∀ m
Phương trình có hai nghiệm x 1 ; x 2 với mọi m
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m x 1 . x 2 = 2 m − 1
Xét
x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 ⇔ 4 m 2 – 2 ( 2 m – 1 ) = 10
⇔ 4 m 2 – 4 m + 2 – 10 = 0 ⇔ 4 m 2 – 4 m – 8 = 0 ⇔ m 2 – m – 2 = 0
m 2 – 2 m + m – 2 = 0 ⇔ m ( m – 2 ) + ( m – 2 ) = 0 ⇔ ( m + 1 ) ( m – 2 ) = 0
⇔ m = 2 m = − 1
Vậy m = 2 và m = −1 là các giá trị cần tìm
Đáp án: D
cho pt x2 - 2(m+1)x + m2 - 1=0. Tìm để phương trình có hai nghiệm phân biệt thỏa mãn x12 + x22 = x1x2 +8
\(\Delta'=\left[-\left(m+1\right)^2\right]-\left(m^2-1\right)\\ =m^2+2m+1-m^2+1\\ =2m+2\)
Để PT có 2 nghiệm phân biệt thì: \(\Delta'>0\)
\(\Leftrightarrow2m+2>0\\\Leftrightarrow2m>-2\\ \Leftrightarrow m>-1 \)
Theo vi ét có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)
Theo đề có:
\(x_1^2+x_2^2=x_1x_2+8\\ \Leftrightarrow x_1^2+x_2^2-x_1x_2-8=0\\ \Leftrightarrow x_1^2+x_2^2+2x_1x_2-x_1x_2-2x_1x_2-8=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\\ \Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\\ \Leftrightarrow4m^2+8m+4-3m^2+3-8\\ \Leftrightarrow m^2+8m-1=0 \)
\(\Delta=8^2-4.-1=64+4=68\) > 0
\(\Rightarrow m_1=\dfrac{-8+\sqrt{68}}{2}=-4+\sqrt{17}\left(nhận\right)\)
\(m_2=\dfrac{-8-\sqrt{68}}{2}=-4-\sqrt{17}\left(loại\right)\)
Vậy để phương trình có hai nghiệm phân biệt thỏa mãn x12 + x22 = x1x2 +8 thì m có giá trị là \(-4+\sqrt{17}\)
$HaNa$
Δ=(2m+2)^2-4(m^2-1)
=4m^2+8m+4-4m^2+4=8m+8
Để phương trình có hai nghiệm phân biệt thì 8m+8>0
=>m>-1
x1^2+x2^2=x1x2+8
=>(x1+x2)^2-2x1x2-x1x2=8
=>(2m+2)^2-3(m^2-1)-8=0
=>4m^2+8m+4-3m^2+3-8=0
=>m^2+8m-1=0
=>m=-4+căn 17(nhận) hoặc m=-4-căn 17(loại)