Bài 1 Tính tổng
A = \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{3^3}\)+ ........+ \(\frac{1}{3^8}\)
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A<0,1 hãy tổng quát bài toán
Chứng minh rổng quát, Nếu:
\(A=\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+...+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\) (a;b \(\in\) N*)
\(a^{2.k}.A=1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+...+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\)
\(a^{2.k}.A+A=\left(1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+..+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\right)-\left(\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+..+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\right)\)
\(A.\left(a^{2.k}+1\right)=1-\frac{1}{a^{2.\left(k+n+1\right)}}< 1\)
\(A< \frac{1}{a^{2.k}+1}\)
Áp dụng vào bài toán dễ thấy a = 3; k = 1
Như vậy, \(A< \frac{1}{3^{2.1}+1}=\frac{1}{3^2+1}=\frac{1}{9+1}=\frac{1}{10}=0,1\left(đpcm\right)\)
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A <0,1 hãy tổng quát bài toán
\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\)
\(\Rightarrow9A=1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{2012}}-\frac{1}{3^{2014}}\)
\(\Rightarrow10A=1-\frac{1}{3^{2016}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{2016}}}{10}\)
Vì 0,1 = \(\frac{1}{10}\) nên \(\frac{1-\frac{1}{3^{2016}}}{10}< \frac{1}{10}\) hay A < 0,1
Bài 1 : Tính tổng S , biết : \(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{2010\times2011}\)
Bài 2 : Tính tổng sau : \(S=\frac{3}{10\times13}+\frac{3}{13\times16}+\frac{3}{16\times19}+....+\frac{3}{58\times61}\)
Bài 3 : Tính tổng sau : \(S=\frac{1}{4\times7}+\frac{1}{7\times10}+\frac{1}{10\times13}+....+\frac{1}{19\times22}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
Bài 1:Tính nhanh:
a,\(\frac{2}{3}+\frac{4}{6}+\frac{6}{3}\)
b,\(\frac{3}{4}+\frac{6}{8}+\frac{18}{12}\)
Bài 2:Tính:
a,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
b,\(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
bài 2 tính tổng
A=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\)
B=\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{97.100}\)
C=\(\frac{8}{7.14}+\frac{8}{14.21}+......+\frac{8}{91.98}\)
giúp mk vs mk đang cần lắm
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}.\)
\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}....+\frac{2}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{50-48}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{97.100}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+....+\frac{100-97}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(C=\frac{8}{7.14}+\frac{8}{14.21}+....+\frac{8}{91.98}\)
\(=\frac{7}{8}.\left(\frac{7}{7.14}+\frac{7}{14.21}+...+\frac{7}{91.98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+.....+\frac{1}{91}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\frac{13}{98}=\frac{13}{112}\)
Tính tổng sau
a) \(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
b) \(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}+\frac{1}{2^n}\)
\(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
\(3A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)
\(3A-A=\frac{1}{3}-\frac{1}{3^9}\)
\(2A=\frac{1}{3}.\left(1-\frac{1}{3^8}\right)\)
\(A=\frac{1}{6}.\left(1-\frac{1}{3^8}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}+\frac{1}{2^n}\)
\(\frac{1}{2}B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}\)
\(B-\frac{1}{2}B=1-\frac{1}{2^{n+1}}\)
\(\frac{1}{2}B=1-\frac{1}{2^{n+1}}\)
\(B=2-\frac{2}{2^n.2}=2-\frac{1}{2^n}\)
tính tổng
A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(2A=1-\frac{1}{3^8}\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
Bài 1: Tính
a,\(\frac{-8}{3}.\frac{6}{13}.\frac{7}{13}.\frac{-3}{8}+1\frac{3}{8}\)
b,\(75\%-\left(\frac{5}{2}+\frac{5}{3}\right)+\left(\frac{-1}{2}\right)^2\)
Bài 2: Tìm x
a,\(\frac{3}{5}.x-\frac{2}{3}=\frac{1}{2}\)
b, \(\left(\frac{1}{2}-x\right).\frac{2}{3}=\frac{1}{8}\)
c, \(|2x-\frac{3}{7}|-\frac{1}{2}=\frac{3}{4}\)
Bài 3:Lớp 6A có 40 HS .Điểm tổng kết cuối năm có\(\frac{1}{5}\) số HS giỏi, \(\frac{1}{2}\) số HS khá , còn lại là trung bình . Ko có yếu, kém,...
a, Tính số học sinh mỗi loại
b, Tính tỉ số % học sinh trung bình so với học sinh cả lớp.
Mik đang cần gấp nha, hóng cao nhân !!!^^
Bài 1 : Tính :
a, \(-\frac{8}{3}.\frac{6}{13}.\frac{7}{13}.\frac{-3}{8}+1\frac{3}{8}\)
\(=\left(-\frac{8}{3}.-\frac{3}{8}\right).\left(\frac{6}{13}.\frac{7}{13}\right)+1\frac{3}{8}\)
\(=1.\frac{42}{169}+1\frac{3}{8}\)
\(=\frac{2195}{1352}\)
b) \(75\%-\left(\frac{5}{2}+\frac{5}{3}\right)+\left(-\frac{1}{2}\right)^2\)
\(=\frac{3}{4}-\frac{25}{6}+\frac{1}{4}\)
\(=\frac{3}{4}+\frac{1}{4}-\frac{25}{6}\)
\(=1-\frac{25}{6}\)
\(=-\frac{19}{6}\)
~Hok tốt~
Bài 2 :
a)\(\frac{3}{5}.x-\frac{2}{3}=\frac{1}{2}\) b) \(\left(\frac{1}{2}-x\right).\frac{2}{3}=\frac{1}{8}\)
\(\frac{3}{5}.x=\frac{1}{2}+\frac{2}{3}\) \(\frac{1}{2}-x=\frac{1}{8}:\frac{2}{3}\)
\(\frac{3}{5}.x=\frac{7}{6}\) \(\frac{1}{2}-x=\frac{3}{16}\)
\(x=\frac{7}{6}:\frac{3}{5}\) \(x=\frac{1}{2}-\frac{3}{16}\)
\(x=\frac{35}{18}\) \(x=\frac{5}{16}\)
c) \(\left|2x-\frac{3}{7}\right|-\frac{1}{2}=\frac{3}{4}\)
\(\left|2x-\frac{3}{7}\right|=\frac{3}{4}+\frac{1}{2}\)
\(\left|2x-\frac{3}{7}\right|=\frac{5}{4}\)
\(\Rightarrow2x-\frac{3}{7}\in\left\{\frac{5}{4};-\frac{5}{4}\right\}\)
\(TH1:2x-\frac{3}{7}=\frac{5}{4}\) \(TH2:2x-\frac{3}{7}=-\frac{5}{4}\)
\(\Rightarrow2x=\frac{5}{4}+\frac{3}{7}\) \(\Rightarrow2x=-\frac{5}{4}+\frac{3}{7}\)
\(2x=\frac{47}{28}\) \(2x=-\frac{23}{28}\)
\(x=\frac{47}{28}:2\) \(2x=-\frac{23}{28}:2\)
\(x=\frac{47}{56}\) \(2x=-\frac{23}{56}\)
\(\Rightarrow x\in\left\{\frac{47}{56};-\frac{23}{56}\right\}\)
Bài 3 :
a) Số học sinh giỏi của lớp 6A là :
40 . 1/5 = 8 học sinh
Số học sinh khá của lớp 6A là :
40 . 1/2 = 20 học sinh
Số học sinh trung bình của lớp 6A là :
40 - 20 - 8 = 12 học sinh
b) Tỉ số % học inh trung bình với số học sinh cả lớp là :
8 : 40 x 100 = 20% (số học sinh cả lớp )
~Hok tốt~
Bài 1 : Tính :
B = \(\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
Bài 2 : tìm x và y
a) x3 - 36x = 0
b) \(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4 ( x , y \(\in\)Z )
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
b) x-y = 4 => x= 4+y
thay x=4+y vào x- 3/ y-2=3/2, có:
4+y-3/ y+2 = 3/2
y+1/ y+2 = 3/2
y+2 -1/ y+2 = 3/2
1 - 1/y+2 = 3/2
1/y+2= 1-3/2
1/y+2 = -1/2
=> y+2 = -2
=> y= -4
Dp x= 4+y => x= 4-4
=> x=0
Vậy x=0 và y=-4