Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen yen vi
Xem chi tiết
tran minh canh
Xem chi tiết
Hoàng Thị Lan Hương
28 tháng 6 2017 lúc 14:12

A=\(2^{n-1}+2.2^n+3-8.2^{n-4}-16.2^n=\)\(\frac{2^n}{2}+2.2^n-8.\frac{2^n}{2^4}-16.2^n+3\)

=\(2^n\left(\frac{1}{2}+2-\frac{8}{16}-16\right)+3\)=\(-14.2^n+3\)

Võ Khánh Lợi
Xem chi tiết
Linh Khánh
3 tháng 9 2018 lúc 11:31

Bạn làm như vầy nèe

A = (3n + 1 - 2.2n)(3n + 1 + 2.2n) - 32n + 2 + (8.2n - 2)2

= (3n + 1 - 2n + 1)(3n + 1 + 2n + 1) - 32n + 2 + (23.2n - 2)2

= (3n + 1)2 - (2n + 1)2 - (3n + 1)2 + (2n + 1)2

= 0

Miku Hatsune
Xem chi tiết
Quỳnh Như
25 tháng 7 2017 lúc 22:59

a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)

\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)

\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)

\(=0\)

b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)

\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)

\(=0\)

Quỳnh Như
Xem chi tiết
Luân Đào
11 tháng 7 2018 lúc 18:33

a,

\(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)

\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)

\(=2.2^{n-1}+2.2^{n+4}=2^n+2^{n+5}\)

b,

\(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)

\(=\left(3^{n+1}\right)^2-\left(2.2^n\right)^2-\left(3^{n+1}\right)^2+\left(2^{n-2+3}\right)^2\)

\(=-2^{n+1}+2^{n+1}=0\)

Diệu Linh Trần Thị
Xem chi tiết
nguyen phuong thao
15 tháng 12 2016 lúc 12:58

làm câu

Truong Thuy Ha
Xem chi tiết
vo ngoc minh
30 tháng 4 2016 lúc 12:22

n-2 chia het cho n+3 

nen n+3-5 chia het cho n+3

5 chia het cho n+3

n+3 =cong tru1 cong tru 5

roi tim n

Nguyễn Khắc Quang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 3 2021 lúc 18:25

\(P=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

ĐKXĐ : \(n\ne-1\)

\(=\frac{n^3+n^2+n^2+n-n-1}{n^3+2n^2+2n+1}=\frac{n^2\left(n+1\right)+n\left(n+1\right)-\left(n+1\right)}{\left(n^3+1\right)+2n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)

Với n nguyên, đặt ƯC( n2 + n - 1 ; n2 + n + 1 ) = d

=> n2 + n - 1 ⋮ d và n2 + n + 1 ⋮ d

=> ( n2 + n + 1 ) - ( n2 + n - 1 ) ⋮ d

=> n2 + n + 1 - n2 - n + 1 ⋮ d

=> 2 ⋮ d => d = 1 hoặc d = 2

Dễ thấy n2 + n + 1 ⋮/ 2 ∀ n ∈ Z ( bạn tự chứng minh )

=> loại d = 2

=> d = 1

=> ƯCLN( n2 + n - 1 ; n2 + n + 1 ) = 1

hay P tối giản ( đpcm )

Khách vãng lai đã xóa
giang Hươngg
Xem chi tiết