F=1/1+√5+1\√5+√9+1/√9+√13+...+1/√2013+√2017
C=1/√1+√2 +1/√2+√3+....+1/√n-1 +√n
1. a,23/27-(11/17-4/27) +(28/17) b,2/3 .7/9 +2/3 .2/9-2/9 c,7/3:5/11-1/3.11/5 d,(1+1/2) .(1+1/3) .(1+1/4).......(1+1/2023) e, (1-1/2).(1-1/3).....(1-1/2023) f,13/17.5/11-7/13.2/5+5/11.4/17-2/5.6/13 g, 1/2+1/3.1/4-1/5:1/6 2,so sánh n+2/n+3 và n+1/n+2 ( n là số tự nhiên)
1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)
Bài 2: thực hiện phép tính bằng cách hợp lý
a. A=(1/2-7/13-1/3)+(-6/13+1/2+1và1/3)
b.B=0,75+2/5+(1/9-1và1/2+5/4)
c.(-5/9).3/11+(-13/18).3/11
d.(-2/3).3/11+(-16/9).3/11
e.(-1/4).(-2/13)-7/24.(-2/13)
f.(-1/27).3/7+(5/9).(-3/7)
g.(-1/5+3/7):2/11+(-4/5+4/7):2/11
`@` `\text {Ans}`
`\downarrow`
`a.`
`A=(1/2-7/13-1/3)+(-6/13+1/2+1 1/3)`
`= 1/2 - 7/13 - 1/3 - 6/13 + 1/2 + 1 1/3`
`= (1/2 + 1/2) + (-7/13 - 6/13) + (-1/3 + 1 1/3) `
`= 1 - 1 + 1`
`= 1`
`b.`
`B=0,75+2/5+(1/9-1 1/2+5/4)`
`= 3/4 + 2/5 + 1/9 - 3/2 + 5/4`
`= (3/4+5/4)+ 1/9 + 2/5 - 3/2`
`= 2 + 1/9 - 11/10`
`= 19/9 - 11/10`
`= 91/90`
`c.`
`(-5/9).3/11+(-13/18).3/11`
`= 3/11*[(-5/9) + (-13/18)]`
`= 3/11*(-23/18)`
`= -23/66`
`d.`
`(-2/3).3/11+(-16/9).3/11`
`= 3/11* [(-2/3) + (-16/9)]`
`= 3/11*(-22/9)`
`= -2/3`
`e.`
`(-1/4).(-2/13)-7/24.(-2/13)`
`= (-2/13)*(-1/4-7/24)`
`= (-2/13)*(-13/24)`
`= 1/12`
`f.`
`(-1/27).3/7+(5/9).(-3/7)`
`= 3/7*(-1/27 - 5/9)`
`= 3/7*(-16/27)`
`= -16/63`
`g.`
`(-1/5+3/7):2/11+(-4/5+4/7):2/11`
`=[(-1/5+3/7)+(-4/5+4/7)] \div 2/11`
`= (-1/5+3/7 - 4/5 + 4/7) \div 2/11`
`= [(-1/5-4/5)+(3/7+4/7)] \div 2/11`
`= (-1+1) \div 2/11`
`= 0 \div 2/11 = 0`
tính \(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+\frac{1}{9\sqrt{13}+13\sqrt{9}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)
Ta có:
\(\frac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}\)
\(=\frac{\sqrt{n+4}-\sqrt{n}}{4\sqrt{n\left(n+4\right)}}=\frac{1}{4}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+4}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)
\(=\frac{1}{4}.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2013}}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{\sqrt{2013}}\right)\)
Bài 1 Tính nhanh
a) -3/7 + 5/13 + 3/7
b) -5/21+-2/21+8/24
c) -5/11+(-6/11+2)
d) (-1/32+1/2)+15/32
e)5/17+ -6/13 + 3/4 + 7/-13+12/17
f) 7/23+-18/18+-4/9+16/23+-5/8
g)1/3+-3/4+3/5+-1/36+1/15+-2/9
h)-1/2+1/3+-1/4+-2/8+4/18+4/9
a)\(-\dfrac{3}{7}+\dfrac{5}{13}+\dfrac{3}{7}\)
=\(\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\dfrac{5}{13}\)
=\(0+\dfrac{5}{13}\)
=\(\dfrac{5}{13}\)
A=1^1+2^5+3^9+4^13+...+504^2013+505^2017
Sr cậu Đoàn Thục Quyên nha , đang làm tìm số cuối thì lú mất KL ra là tổng
Cái dòng KL sai r nhé cậu
Còn nguyền phần trên đúng rồi
Cậu thay dòng KL là :
Vậy : chứ số cuối của tổng trên là 5
#hoc_tot#
Ta dễ dàng nhận ra các số trên đều có dạng : 4k + 1
\(1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)
\(=\left(.....1\right)+\left(.....2\right)+........+\left(.....4\right)+\left(......5\right)\)
Ta thấy : tổng A có 50 nhóm và thừa 5 số hạng cuối
=> Chữ số tận cùng của 50 là :
50 = 10 . 5 ( có chứa 10 )
=> Tổng của 50 nhóm đó là 0
=> Tổng 5 số hạng cuối là : 5
Vậy : tổng trên = 5
A=1^1+2^5+3^9+4^13+...+504^2013+505^2017
Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈∈ N)
=> Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505
=>Vậy A có tận cùng là 5.
B = 1 + 5 + 52 + 53 + ....... + 52008 + 52009
S = 1 + 2 + 5 + 14 + ....... + 3n-1 + 1/2 (với n thuộc Z)
A = 1 + 3/2^3 + 4/2^4 + 5/2^5 + ...... + 100/2^100
Q = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) + ...... + 1/20*(1+2+3+.....+20)
M = -4/1*5 - 4/5*9 - 4/9*13 - ....... - 4/(n+4)*n
Giúp mk với! Mk đang cần gấp lắm !!!!!
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow 2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
Trừ theo vế:
\(2A-A=1+\frac{3}{2^2}+\frac{4-3}{2^3}+\frac{5-4}{2^4}+\frac{6-5}{2^5}+...+\frac{100-99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{3}{4}-\frac{100}{2^{100}}+(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
Đặt \(T=(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
\(\Rightarrow 2T=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Trừ theo vế: \(2T-T=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Leftrightarrow T=\frac{1}{4}-\frac{1}{2^{99}}\)
Do đó: \(A=1+\frac{3}{4}-\frac{100}{2^{100}}+\frac{1}{4}-\frac{1}{2^{99}}=2-\frac{102}{2^{100}}\)
Tính nhanh : 1/1*5+1/5*9+1/9*13+...+1/2013*2017
\(\frac{1}{1\times5}+\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{2013\times2017}\)
\(=4\times\left(\frac{1}{1\times5}+\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{2013\times2017}\right)\)
\(=4\times\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{2013}-\frac{1}{2017}\right)\)
\(=4\times\left(1-\frac{1}{2017}\right)\)
\(=4\times\frac{2016}{2017}\)
\(=\frac{8064}{2017}\)
Tính toán
1) S = 1+2+3+4+...+n
2) S = 1*2*3...*n
3)S = 2+4+6+...+n
4)S = 1+3+5+...+n
5)S = 2*4*6...*n
6)S = 1-2+3-4+...+n
7)S = -1+2-3+4+...+n
8)S = 1+4+9+16+...+n*n
9)S = 1+9+25+...+( n mod 2 = 1)^2
10)S =4+16+...+( n mod 2 = 0)^2
11)S =5+10+15+...+ n mod 5 =0
12)S = 1+2-3+4+5-6+7+8-9...+n-(n mod 3 = 0 )
13)S = 1+2!+3!+4!...+n!
14)S =1+(1+2)+(1+2+3)+...+( tổng các số từ 1 tới )( i chạy từ 1 tới n)
15)S =1*2+2*3+4*5+...+(n-1)*n
HELP ME!
Bài 1: chứng minh rằng
a) 7^6 + 7^5 - 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Bài 2: Tìm n thuộc N biết
a) 5^n ( 1+5^2) = 650
b) 32^-n * 16^n = 1024
c) 3^-1 * 3^n + 5 * 3^n-1 = 162
d) 9 * 27^n = 3^5
e) ( 2^3 : 4 ) * 2^n = 4
f) 3^-2 * 3^4 * 3^n = 3^7
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
tìm hai số x và y biết x:2=y:(-5) và x-y=-7
tìm hai số x;y.Biết 7x=3y và x-y=16
tìm ba số x,y,z.Biết 2a=4b và 3b=5c và a+2b-3c=99