Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Hà An

Những câu hỏi liên quan
DANG HUONG GIANG
Xem chi tiết
TRẦN NHẬT ANH
14 tháng 3 2020 lúc 8:24

a,

A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99 

=1−(3+5+7+...+99)=1−(3+5+7+...+99)

=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498

b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98

c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99

Khách vãng lai đã xóa
Bui Tra My
Xem chi tiết
Hồ Thu Giang
2 tháng 8 2015 lúc 10:42

Tổng trên có số số hạng là:

(99 - 3) : 4 + 1 = 25 (số)

Tổng trên là:

(99 + 3) x 25 : 2 = 1275

ĐS:

do quoc an
Xem chi tiết
Anh Phạm
Xem chi tiết
teo
2 tháng 9 2018 lúc 20:07

A=[99-1]:2+1

=49

Bui Ngoc Linh
Xem chi tiết
Mạnh Lê
3 tháng 8 2017 lúc 20:37

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)

\(B=\frac{1}{3}-\frac{1}{111}\)

\(B=\frac{12}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)

\(C=7.\frac{3}{35}\)

\(C=\frac{3}{5}\)

Trần Phúc
3 tháng 8 2017 lúc 20:50

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)

\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)

\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)

Đức Phạm
3 tháng 8 2017 lúc 21:16

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\) 

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(B=\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}\)

\(\Rightarrow C=\frac{3}{5}\)

Phan Gia Hân
Xem chi tiết
Bùi Minh Khuê
17 tháng 3 2023 lúc 21:27

(4+11):15+(35+64):99+(2+5):7=15:15+99:99+7:7=1+1+1=3

Phạm Quang Lộc
17 tháng 3 2023 lúc 21:33

`4/15+35/99+11/15-2/7+64/99-5/7`

`=(4/15+11/15)+(35/99+64/99)-(2/7+5/7)`

`=15/15+99/99-7/7`

`=1+1-1`

`=2-1`

`=1`

Phan Gia Hân
Xem chi tiết
Nguyễn Văn Nhân
19 tháng 3 2023 lúc 15:04

1

Nguyễn Lê Phước Thịnh
12 tháng 11 2025 lúc 20:35

Ta có: \(\frac{4}{15}+\frac{35}{99}+\frac{11}{15}-\frac27+\frac{64}{99}-\frac57\)

\(=\left(\frac{4}{15}+\frac{11}{15}\right)+\left(\frac{35}{99}+\frac{64}{99}\right)-\left(\frac27+\frac57\right)\)

\(=\frac{15}{15}+\frac{99}{99}-\frac77\)

=1+1-1

=1

An Nguyen
Xem chi tiết
Nguyễn Duy Hùng
1 tháng 5 2015 lúc 15:44

\(A=\frac{4}{3}\cdot\frac{4}{7}+\frac{4}{7}\cdot\frac{4}{11}+\frac{4}{11}\cdot\frac{4}{15}+...+\frac{4}{95}\cdot\frac{4}{99}\)

\(A=\frac{16}{3\cdot7}+\frac{16}{7\cdot11}+\frac{16}{11\cdot15}+...+\frac{16}{95\cdot99}\)

\(A=4\cdot\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{95\cdot99}\right)\)

\(A=4\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)

\(A=4\cdot\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(A=4\cdot\frac{32}{99}\)

\(A=\frac{128}{99}\)

Phạm Ngọc Thạch
1 tháng 5 2015 lúc 15:49

\(A=\frac{4}{3}\times\frac{4}{7}+\frac{4}{7}\times\frac{4}{11}+...+\frac{4}{95}\times\frac{4}{99}\)

     \(=4\times\frac{4}{3.7}+4\times\frac{4}{7.11}+...+4\times\frac{4}{95.99}\)

     \(=4\times\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\right)\)

     \(=4\times\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{91}-\frac{1}{95}+\frac{1}{95}-\frac{1}{99}\right)\)

     \(=4\times\left(\frac{1}{3}-\frac{1}{99}\right)\)

     \(=4\times\frac{32}{99}\)

     \(=\frac{128}{99}\)

Nguyễn Bá Thông
Xem chi tiết