A=(1/2+1/2)^2+(1/2)^3+(1/2)^4+....+(1/2)^98+(1/2)^99
Chứng minh A<1
Cho
S=1/50 + 1/51 + 1/52 +… + 1/98 +1/99
Chứng tỏ rằng S > 1/2
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\dfrac{1}{50}>100\) \(\dfrac{1}{51}>100\) \(\dfrac{1}{52}>100\) \(....\) \(\dfrac{1}{98}>100\) \(\dfrac{1}{99}>100\)
\(\Rightarrow S>\dfrac{1}{100}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}+\dfrac{1}{100}\\ \) {50 số 100}
\(S>50\cdot\dfrac{1}{100}=\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
a,Tính tổng : 1/2+1/2^2+1/2^3+...+1/2^1998
b,Chứng minh A=1/3^2-1/3^4+...+1/3^4n-2-1/3^4n+...+1/3^98-1/3^100
a) Đặt M=1/2+1/22+1/23+...+1/21998
=>2M=1+1/2+1/22+1/23+...+1/21997
2M-M=(1+1/2+1/22+1/23+...+1/21997)-(1/2+1/22+1/23+...+1/21998)
M=1-1/21998
hứng minh rằng B<1 với:
A= 1/2+(1/2)^2+(1/2)^3+(1/2)^4+.......+ (1/2)^98+(1/2)^99
Cho A = ( 1 + 1/2 + 1/3 + ..... + 1/98 ) . 2 . 3 . 4 . ... . 98
Chứng minh A là số nguyên.
Ta có :
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{98}=\frac{2.3...98+3.4...98+2.4...98+....+2.3....97}{2.3.4.....98}\)
\(\Rightarrow A=\frac{2.3...98+3.4...98+2.4...98+....+2.3..98}{2.3.4....98}.2.3.4...98\)
\(=2.3...98+3.4....98+2.4....98+.....+2.3...98\) là một số nguyên
Vậy A là một số nguyên
Ta có:A=1.2.3...98+\(\frac{1.2.3...98}{2}\)+\(\frac{1.2.3...98}{3}\)+...+\(\frac{1.2.3...98}{98}\)
=1.2.3...98+1.3.4.5...98+....+1.2.3...97
Vì 1.2.3...98 có kết quả là số nguyên,....,1.2.3...97 có kết quả là số nguyên
=>A là số nguyên
Cho A=[1/1+1/2+1/3+...+1/98]*2*3*4*...*98
Chứng minh A chia hết cho 99
A=[1/1+1/2+....+1/98]*2*4*...*98*3*33=A=[1/1+1/2+....+1/98]*2*4*....*98*99\(⋮\)99
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times98\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times33\times...\times98\)
\(A=\left(3\times33\right)\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
\(A=99\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
Vậy \(A⋮99\)(Vì A có thừa số 99)
Cho A = 1/3 mũ 2 + 1/4 mũ 2 + 1/5 mũ 2 + ....... + 1/98 mũ 2 .
Chứng minh A < 1.
A=\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+...+\(\frac{1}{98^2}\)
A=\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+\(\frac{1}{5.5}\)+...+\(\frac{1}{98.98}\)
A<\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{97.98}\)=\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{97}\)-\(\frac{1}{98}\)=\(\frac{1}{2}\)-\(\frac{1}{98}\)=\(\frac{24}{49}\)<1.
Vậy A<1
Cho A = ( 1 + 1/2 + 1/3 + ... + 1/98 ) x 2 x 3 x 4 x ... x 98
Chứng minh A chia hết cho 99
a, Cho A= 1/99 + 2/98 + 3/47 + .......... + 98/2 + 99/1
B= 1/2 + 1/3 + 1/4 + ..........+ 1/99 + 1/100
Tính B/A
b, Cho A= 1/49 + 2/48 + 3/47 +.......+ 48/2 +49/1
B= 1 + 2/3 + 2/4 +......+ 2/49 + 2/50
Tính A/B
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
Chứng minh rằng : A=1×98+2×97+3×96+. . . . .+96×3+97×2+98×1/1×2+2×3+3×4+. . . . .+96×97+97×98+98×99=1/2
Ai giải ra nhanh và sớm nhất mk sẽ tk cho 5 tk lun
Thank you very good!
Bạn tìm ở link này nha: https://olm.vn/hoi-dap/tim-kiem?q=+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng+1.98+2.97+3.96+...+96.3+97.2+98.11.2+2.3+3.4+...+96.97+97.98+98.99+=1/2+&id=517786