đường tròn tâm o ngoài tiếp tam giác đều có cạnh là 6 cm. Tính bán kính của đường tròn?
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
Cho đường tròn tâm (O), bán kính R ngoại tiếp đa giác dêdu của đường tròn A. Tính bán kính của đường tròn ngoại tiếp đa giác đó (A;R) trong trường hợp a, đa giác là tam giác đều b, đa giác là hình vuông c, đa giác là lục giác đều
Cho tam giác ABC vuông tại A, có AH là đường cao. Đường tròn tâm E bán kính BH cắt cạnh AB ở M và đường tròn tâm I đường kính CH cắt cạnh AC ở N.
a, CM tứ giác AMHN là hình chữ nhật
b, Cho bt : AB=6 cm, AC= 8cm. Tính độ dài đoạn thẳng MN
c, CM rằng MN là tiếp tuyến của đường tròn tâm E
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
Bài 1 : Cho đường tròn ( O ; R ) đường kính AB = 5 cm và C là một điểm thuộc đường tròn sao cho AC = 3 cm.
a) Tam giác ABC là tam giác j? Vì sao? Tính R & Sin góc CAB
b) Đường thẳng qua C vuông gó với AB tại H, cắt đường tròn ( O ) tại D. Tính CD & chứng minhrawngf AB là tiếp tuyến của đương tròn (C ; CH )
Bài 2 : Cho đường tròn tâm I, bán kính IA = a cm, điểm M nằm bên ngoài đườn tròn và cách I là 7 cm, đường thảng đi qua M & tiếp xúc với đường tròn tại B. Tính MB
Bài 3 : Cho đường tròn tâm O, bán kính 6 cm, một điểm A cách O một khoảng là 10 cm. Kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Tính AB
1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với
cho đường tròn tâm O bán kính r , điểm A nằm ngoài đường tròn tâm O . vẽ tiếp tuyến AB của đướng tròn tâm O , vẽ dây cung BC của đường tròn tâm O vuông góc với OA tại H
a, Cm H là trung điểmcủa BC
b, CM AC là tiếp tuyến của đường tròn tâm O
c, OA = 2r cm tam giác ABC đều
d, trên tia dối của tia BC lấy Q ,từ Q kẻ 2 tiếp tuyến QD và QE của đường tròn tâm O .CM AED thẳng hàng
Cho đường tròn tâm O, bán kính R. M là một điểm nằm ngoài đường tròn . Từ M kẻ hai tiếp tuyến MA và MB đến đường tròn(A,B là hai tiếp điểm ). Gọi E là giao điểm của AB và OM.
1.CM: Tứ giác MAOB là tứ giác nội tiếp
2.Tính diện tích tam giác AMB , biết OM=5; R=3
3.Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). CM: EA là tia phân giác của góc CED.