Giải và biện luận phương trình sau:
\(2x-5x\sqrt{x-a}+2a^2-2a\) =0
giải và biện luận phương trình
\(x^2+x+m=0\)
Giúp với
\(\Delta =1^2-4.1.m=1-4m\)
Pt có nghiệm kép
\(\to \Delta=0\\\to 1-4m=0\\\leftrightarrow m=\dfrac{1}{4}\)
Pt có 2 nghiệm phân biệt
\(\to \Delta>0\\\to 1-4m>0\\\leftrightarrow m<\dfrac{1}{4}\)
Pt vô nghiệm
\(\to \Delta<0\\\to 1-4m<0\\\leftrightarrow m>\dfrac{1}{4}\)
Giải và biện luận phương trình (ĐK: a+-b=0)
\(\frac{x}{a^2-b^2}+\frac{2x}{a+b}+\frac{a+b+1}{2\left(a+b\right)}=\frac{x}{a-b}+1\)
Giải và biện luận phương trình (ĐK: a+-b=0)
\(\left(a^2-b^2\right)\left(x^2+1\right)=2\left(a^2+b^2\right)x\)
MẤY BN GIẢI DÙM VS PLEASE!!!
Giải phương trình:
\(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\left(a>0\right)\)
\(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\)
Đặt \(\sqrt{x-a}=b\ge0\)
\(\Rightarrow2b^2-5ab+2a^2=0\)
\(\Leftrightarrow\left(b-2a\right)\left(2b-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\sqrt{x-a}\\\sqrt{x-a}=2a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)
Giaỉ và biện luận hệ phương trình sau: \(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
Hướng dẫn : Dùng phương pháp cộng đại số dc vế pt 1 ẩn x
Ta có : \(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2m+10\right)x+6x=2\\3mx+6x=-12\end{cases}}}\)
Trừ vế 1 cho vế 2 phương trình,Ta được:
(10 - m )x = 14 (*)
TH1 : 10 - m \(\ne\)0 \(\Leftrightarrow\) m \(\ne\) 10
Ta có : (*) \(\Leftrightarrow\) \(x=\frac{14}{10-m}\)
Ta tìm được : \(y=\frac{5m+20}{m-10}\)
Hệ có nghiệm duy nhất: \(\left(x;y\right)=\left(\frac{14}{10-m};\frac{5m+20}{m-10}\right)\)
TH2 : 10 - m = 0 \(\Leftrightarrow\) m = 10
Phương trình (*) vô nghiệm \(\Leftrightarrow\) Hệ vô nghiệm
Đáp số: +m\(\ne\)0 . Hệ có nghiệm duy nhất :
\(\left(x;y\right)=\left(\frac{14}{10-m};\frac{5m+20}{m-10}\right)\)
+ m = 0 (Hệ vô nghiệm )
Giải các phương trình và bất phương trình sau
a)\(\left|x-9\right|\) \(=2x+5\)
b) \(\dfrac{1-2x}{4}\) \(-2\) ≤ \(\dfrac{1-5x}{8}\) + x
c)\(\dfrac{2}{x-3}\)\(+\dfrac{3}{x+3}\)\(=\dfrac{3x+5}{x^2-9}\)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
Ta có:
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)
\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)
\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)
giải phương trình chứa dấu giá trị tuyệt đối sau:
\(a)|-2,5x|=x-12\)
\(b)|5x|-3x-2=0\)
\(c)|-2x|+x-5x-3=0\)
\(d)|3-x|+x^2-x(x+4)=0\)
\(e)(x-1)^2+|x+21|-x^2-13=0\)
Giải phương trình \(x\sqrt{2x^2+5x+3}=4x^2-5x-3\)
Gợi ý
ĐKXĐ: ....
Do x=0 không phải là nghiệm nên chia cả hai vế cho x^2 có
\(\sqrt{2+\frac{5}{x}+\frac{3}{x^2}}=4-\frac{5}{x}-\frac{3}{x^2}\)(1) Đặt \(\sqrt{\frac{5}{x}+\frac{3}{x^2}+2}=y\Rightarrow y\ge0\)và \(\frac{5}{x}+\frac{3}{x^2}=y^2-2\)
Khi đó \(\left(1\right)\Leftrightarrow y=4-y^2+2\)Sau khi tìm được y thì thế vào tìm x , rồi đối chiếu ĐKXĐ và trả lời
KL : ...
Giải phương trình :
\(\sqrt{2x+5}-\sqrt{3-x}=x^2-5x+8\)
\(\sqrt{2x+5}+3-1-\sqrt{3-x}=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x+5}-3}-\frac{2-x}{1-\sqrt{3-x}}-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x+5}-3}+\frac{1}{1-\sqrt{3-x}}-x+3\right)=0\)
Giải nốt vs ạ