tìm số tự nhiên có hai chữ số, biết rằng tổng hai chữ số bằng 10 và hiệu của hai chữ số là 2.
Bài 1 : Tìm hai số tự nhiên biết rằng tổng của chúng là 100 và số thứ nhất gấp 4 lần số thứ hai
Bài 2 : Tìm hai số tự nhiên biết rằng hiệu của chúng là 10 và 2 lần số thứ nhất bằng 3 lần số thứ hai
Bài 3 : Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục bé hơn chữ số hàng đơn vị là 3. Nếu đổi chỗ hai chữ số của nó thì được số mới biết rằng tổng của số mới và ban đầu là 77
Bài 1:
Gọi hai số tự nhiên cần tìm là a,b
Số thứ nhất gấp 4 lần số thứ hai nên a=4b(1)
Tổng của hai số là 100 nên a+b=100(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a=4b\\a+b=100\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4b+b=100\\a=4b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=100\\a=4b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=\dfrac{100}{5}=20\\a=4\cdot20=80\end{matrix}\right.\)
Bài 2:
Gọi hai số cần tìm là a,b
Hiệu của hai số là 10 nên a-b=10(4)
Hai lần số thứ nhất bằng ba lần số thứ hai nên 2a=3b(3)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=10\\2a=3b\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=10\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b=20\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b-2a+3b=20\\2a=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\2a=3\cdot20=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)
Bài 3:
Gọi số tự nhiên cần tìm có dạng là \(\overline{ab}\left(a\ne0\right)\)
Chữ số hàng chục bé hơn chữ số hàng đơn vị là 3 nên b-a=3(5)
Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới lập ra và số ban đầu là 77 nên ta có:
\(\overline{ab}+\overline{ba}=77\)
=>\(10a+b+10b+a=77\)
=>11a+11b=77
=>a+b=7(6)
Từ (5) và (6) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=5\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a+b+a+b=5+7\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=12\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=7-6=1\end{matrix}\right.\)
Vậy: Số tự nhiên cần tìm là 16
Bài 1. Tìm hai số, biết tổng của hai số bằng 65 và hiệu của chúng là 11
Bài 2. Tìm hai số, biết tổng của hai số bằng 75 và số này gấp đôi số kia.
Bài 3. Một số tự nhiên lẻ có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 68. Tìm số đó
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
bài 3 mk chỉ bt số đó là số 75 còn cách làm chi tiết thì mk ko bt
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
Bài 1: Tìm số tự nhiên có hai chữ số. Biết rằng tổng các chữ số bằng 6 và nếu thêm vào số đó 18 đơn vị thì được một số cũng viết bằng các chữ số đó nhưng theo thứ tự ngược lại
Bài 2: Tổng của hai số bằng 80. Hiệu của chúng bằng 14. Tìm hai số đó
Bài 3: Tìm hai số biết tổng của chúng bằng 7 và tổng nghịch đảo của chúng bằng 7/12
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
tìm số tự nhiên có hai chữ số biết tổng hai chữ số và hiệu hai chữ số bằng 8 và hiệu hai chữ số bằng 4
Gọi số cần tìm là ab .
a - b = 4
( a + b ) + 4 = 8
=> a + b = 8 - 4
=> a + b = 4
a + b = a - b
=> b = 0
b = 0 đồng nghĩa với a = 4
số đó là 40
Số đó là : 62 . Chắc chắn 100% là đúng !
k nha !
Tìm hai số có hiệu bằng 76, biết rằng nếu viết thêm một chữ số 4 vào bên phải số bị trừ và giữ nguyên số trừ rồi thực hiện lại phép trừ thì được hiệu mới bằng 782.
tìm số có 2 chữ số , biết rằng tổng hai số bằng số tự nhiên lớn nhất có 2 chữ số và hiệu là STN lớn nhất có 1 chữ số . giải bằng lời văn
tổng của hai số tự nhiên lớn nhất có hai chữ số là: 99
hiệu cuả chúng sẽ là 9
vậy số bé là :
(99-9) : 2=45
số lớn là :
99-45=54
đáp số :số bé : 45
số lớn : 54
Số tự nhiên lớn nhất có 2 chữ số là:99
Số tự nhiên lớn nhất có 1 chữ số là 9
Số bé là:
(99-9):2=45
Số lớn là:
99-45=54
Tìm số tự nhiên có hai chữ số. Biết rằng tổng của hai chữ số đó là 10 và nếu đổi chỗ hai chữ số ấy thì được số mới hơn số cũ là 36.
Gọi chữ số hàng đơn vị của số đã cho là x (0 ≤ x ≤ 9 ; x ∈ N).
Khi đó, chữ số hàng chục là 10 – x
Chữ số đã cho có dạng : 10(10 – x) + x = 100 – 9x
Khi đổi chỗ, ta được số mới có dạng : 10x + 10 – x = 9x + 10
Theo bài ra ta có phương trình :
9x + 10 = (100 – 9x) + 36 ⇔ 18x = 126
⇔ x = 7 (thỏa mãn điều kiện)
Vậy số đã cho là 37.
Gọi chữ số hàng đơn vị của số đã cho là x (0 ≤ x ≤ 9 ; x ∈ N).
Khi đó, chữ số hàng chục là 10 – x
Chữ số đã cho có dạng : 10(10 – x) + x = 100 – 9x
Khi đổi chỗ, ta được số mới có dạng : 10x + 10 – x = 9x + 10
Theo bài ra ta có phương trình :
9x + 10 = (100 – 9x) + 36 ⇔ 18x = 126
⇔ x = 7 (thỏa mãn điều kiện)
Vậy số đã cho là 7
Tìm số tự nhiên có hai chữ số biết tổng hai chữ số của số đó là 16 và hiệu là 2
Gọi số tự nhiên có hai chữ số là ab
Vì a+b=16;a-b=2
Do đó chữ số a là:(16+2):2=9
chữ số b là:16-9=7
Vậy số cần tìm là 97
1=506 2=217,2 3=68 4=58;128 5=50 6=48 7=55;65 8=3;20 9=23780 10=6 11=46 12=49;391 13=80 14=10;2005 15=1/64