Output của bài toán giải phương trình bậc hai ax2 + by + c = 0 (a khác 0) là
A. x,a,b,c
B. a,b,c
C. a,b
D. x
Output của bài toán giải phương trình bậc hai ax2 + by + c = 0 (a khác 0) là
Output: nghiệm của phương trình
Input của bài toán giải phương trình bậc hai a x 2 + b x + c = 0 là:
A. a, c, x
B. b, a, x
C. a, b, c
D. x, a, b, c
Input của bài toán giải phương trình bậc hai a x 2 + b x + c = 0 là
A. x, a,b,c
B. a, b
C. a, b, c
D. x, a, c
ch đa thức bậc hai P(x)=ax2+bx+c. trong đó: a,b và c là những số với a khác 0.cho biết a+b+c=0 .giải thích tại são=1 là một nghiệm của P(x)
P(1)=a+b+c=0
=>x=1 là nghiệm của P(x)
bài toán giải phương trình bậc 1 ax+b=0 xác định input output
Xác định Input và Output của các bài toán sau:
Vd1: Giải phương trình
ax2 + bx + c = 0
Vd2 Kiểm tra số nguyên dương N có phải là số nguyên tố không?
Vd3 : Cho 3 số a, b, c bất kì. Tìm số lớn nhất trong ba số.
Vd4: Tìm giá trị lớn nhất của 1 dãy số nguyên.
vd 5:Cho dãy A gồm N số nguyên a1, a2, a3, …,aN. Cần sắp xếp các số hạng để dãy A trở thành dãy không giảm
Input:
VD1: ba số a,b,c
VD2: số nguyên dương N
VD3: 3 số a,b,c
VD4: dãy số nguyên
VD5: số nguyên N và dãy a1,a2,...,aN
Output:
VD1: Nghiệm x của phương trình ax2+bx+c=0
VD2: N là số nguyên tố, N không phải số nguyên tố
VD3: Số lớn nhất trong 3 số
VD4: Giá trị lớn nhất của dãy
VD5: Dãy số tăng dần
Phương trình nào là phương trình bậc nhất hai ẩn x, y: a. ax+by=c(a,b,c∈R) b. ax+by=c(a,b,c∈R,c≠0) c. ax+by=c(a,b,c∈R,a≠0hoặcb≠0) d. A, B, C đều đúng.
Cho đa thức bậc hai P(x) = ax2 + bx + c. Trong đó: a,b và c là những số với a ≠ 0. Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của P(x)
mk chỉ cần thay x bằng 1 vào đó rồi tính đc P bằng 0 thì suy ra x bằng 1 là nghiệm của đa thức P là xog
a) Thay x = 1 vào đa thức F(x) ta được: F(1) = a.12 + b.1 + c F(1) = a + b + c F(1) = 0. Ta có F(x) = 0 tại x = 1 nên x = 1 là một nghiệm của F(x)
3. Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai
a x 2 + b x + c = 0 ( a ≠ 0 )
Nêu điều kiện để phương trình a x 2 + b x + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
1954 x 2 + 21 x – 1975 = 0
Nêu điều kiện để phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
2005 x 2 + 104 x – 1901 = 0