Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Thùy Dương
Xem chi tiết
Yuki_Kali_Ruby
Xem chi tiết
kagamine rin len
24 tháng 12 2015 lúc 16:24

S=1+3+3^2+3^3+3^4+...+3^2009

=(1+3)+(3^2+3^3)+...+(3^2008+3^2009)

=4+3^2(1+3)+...+3^2008(1+3)

=4(1+3^2+...+3^2008) chia hết cho 4

Phan Ngọc Bảo Trân
Xem chi tiết
Nguyễn Trần Linh Chi
Xem chi tiết
Phú Quý Lê Tăng
13 tháng 2 2019 lúc 21:12

\(7x+4y⋮37\Leftrightarrow5\left(7x+4y\right)⋮37\Leftrightarrow35x+20y⋮37\)(dùng dấu 2 chiều vì \(\left(5,37\right)=1\))

Lại có \(74x+74y⋮37\)suy ra \(\left(74x+74y\right)-\left(35x+20y\right)⋮37\)

Điều đó có nghĩa là \(39x+54y⋮37\Leftrightarrow3\left(13x+18y\right)⋮37\)mà \(\left(3,37\right)=1\)nên \(13x+18y⋮37\)

Chúc bạn học tốt!

Chim Hoạ Mi
13 tháng 2 2019 lúc 21:15

ta có 

A=9(7x+4y) - 2(13x+18y)

A=63x+36y-26x-36y

A=x(63-26)-(36y-36y)

A=37x

=>A chia hết cho 37

mà 7x+4y chia hết cho 37=>9(7x+4y)  chia hết cho 37

9(7x+4y)  chia hết cho 37=>2(13x+18y)

mà 2 và 37 nguyên tố cùng nhau =>13x+18y chia hết cho 37

vậy 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37

Tạ Thị Phương Thảo
13 tháng 2 2019 lúc 21:21

Giải

Ta có 7x + 4y chia hết cho 37

=> 5(7x + 4y) chia hết cho 37

=> 35x + 20y chia hết cho 37

=> 35x + 20y + 3(13x + 18y) = 35x + 20y + 39x + 54y = 74x + 74y = 74(x+y) chia hết cho 37

Vì 35x + 20y chia hết cho 37 => 3(13x+18y) phải chia hết cho 37 mà (3;37)=1 => 13x + 18y phải chia hết cho 37 => đpcm

dream XD
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
13 tháng 3 2021 lúc 11:39

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

maria
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
huynh nhu anh
19 tháng 7 2017 lúc 10:37

b/n bang 2      c/n bang 2

Nguyễn Thị Kim Chi
Xem chi tiết
no name
Xem chi tiết
Nguyễn Huy Tú
28 tháng 8 2016 lúc 14:00

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

Nguyễn Huy Tú
28 tháng 8 2016 lúc 13:57

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

Nguyễn Huy Tú
28 tháng 8 2016 lúc 14:04

c) \(S=2+2^3+2^5+...+2^{59}\)

\(4S=2^3+2^5+2^7+...+2^{61}\)

\(4S-S=\left(2^3+2^5+2^7+...+2^{61}\right)-\left(2+2^3+2^5+...+2^{59}\right)\)\(\Rightarrow3S=2^{61}-2\)

\(\Rightarrow S=\frac{2^{61}-2}{3}\)