Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và bội chung nhỏ nhất của chúng là 210
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và bội chung nhỏ nhất của chúng là 210
Ta có: BCNN (a,b) . ƯCLN (a,b) = a . b
Mà a . b = 2940 & BCNN (a,b) = 210
=> 210 . ƯCLN (a,b) = 2940
=> ƯCLN (a,b) = 2940 : 210
=> ƯCLN (a,b) = 14
Ta có: a = 14m ; b = 14n (m,n∈Z;m,n≠0)(m,n∈Z;m,n≠0)
=> a . b = 14m . 14n = 2940
=> 14m . 14n = 2940
=> 196 . mn = 2940
=> mn = 2940 : 196 = 15
=> Ta có các trường hợp:
m = 1; b = 15 => \(\begin{cases}a=14\cdot1=14\\b=14\cdot15=210\end{cases}\)m = -1 ; b = -15 =>\(\begin{cases}a=14\cdot\left(-1\right)=-14\\b=14\cdot\left(-15\right)=-210\end{cases}\)m = 15; b = 1 =>\(\begin{cases}a=14\cdot15=210\\b=14\cdot1=14\end{cases}\)m = -15 ; b = -1 => \(\begin{cases}a=14\cdot\left(-15\right)=-210\\b=14\cdot\left(-1\right)=-14\end{cases}\)m = 3 ; b = 5 => \(\begin{cases}a=14\cdot3=42\\b=14\cdot5=70\end{cases}\)m = -3 ; b = -5 => \(\begin{cases}a=14\cdot\left(-3\right)=-42\\b=14\cdot\left(-5\right)=-70\end{cases}\)m = 5 ; b = 3 => \(\begin{cases}a=14\cdot5=70\\b=14\cdot3=42\end{cases}\)m = -5 ; b = -3 => \(\begin{cases}a=14\cdot\left(-5\right)=-70\\b=14\cdot\left(-3\right)=-42\end{cases}\)Ta có: a . b = BCNN(a;b) . UCLN(a;b)
Mà a . b= 2940 và BCNN(a;b) = 210
=> UCLN(a;b) = 2940 : 210 = 14
=> a = 14m và b = 14n (Với m ; n khác 0)
Thay a = 14m và b = 14n vào đẳng thức a . b = 2940 ta được:
14m . 14n = 2940 => 196 . mn = 2940 => mn = 15
Do m và n là hai số tự nhiên nên mn = 1 . 15 = 3 . 5
+) Với m = 1 và n = 15 thì a = 14 và b = 210
+) Với m = 15 và n = 1 thì a = 210 và b = 14
+) Với m = 3 và n = 5 thì a = 42 và b = 70
+) Với m = 5 và n = 3 thì a = 70 và b = 42
Ta có: BCNN (a,b) . ƯCLN (a,b) = a . b
Mà a . b = 2940 & BCNN (a,b) = 210
=> 210 . ƯCLN (a,b) = 2940
=> ƯCLN (a,b) = 2940 : 210
=> ƯCLN (a,b) = 14
Ta có: a = 14m ; b = 14n \(\left(m,n\in Z;m,n\ne0\right)\)
=> a . b = 14m . 14n = 2940
=> 14m . 14n = 2940
=> 196 . mn = 2940
=> mn = 2940 : 196 = 15
=> Ta có các trường hợp:
m = 1; b = 15 => a = 14.1 = 14 b = 14.15 = 210m = -1 ; b = -15 => a = 14.(-1) = -14 b = 14.(-15) = -210m = 15; b = 1 => a = 14.15 = 210 b = 14.1 = 14m = -15 ; b = -1 => a = 14.(-15) = -210 b = 14.(-1) = -14m = 3 ; b = 5 => a = 14.3 = 42 b = 14.5 = 70m = -3 ; b = -5 => a = 14.(-3) = -42 b = 14.(-5) = -70m = 5 ; b = 3 => a = 14.5 = 70 b = 14.3 = 42m = -5 ; b = -3 => a = 14.(-5) = -70 b = 14.(-3) = -42Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và bội chung nhỏ nhất của chúng là 210
Gọi d = ƯCLN(a; b) (d thuộc N*)
=> a = d.m; b = d.n (m;n)=1
=> BCNN(a; b) = d.m.n = 210 (1)
Lại có: a.b = 2940 hay d.m.d.n = 2940 (2)
Tứ (1) và (2) => d = 2940 : 210 = 14
=> m.n = 210 : 14 = 15
Giả sử a > b => m > n mà (m;n)=1 => \(\left[\begin{array}{nghiempt}m=15;n=1\\m=5;n=3\end{array}\right.\)
+ Với m = 15; n = 1 thì a = 15.14 = 210; b = 1.14 = 14
+ Với m = 5; n = 3 thì a = 5.14 = 70; b = 3.14 = 42
Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (210;14) ; (70;42) ; (42; 70) ; (14; 210)
Phân tích ra ta thấy:
BCNN a và b nhân WCLN a và b = a nhân b.
=>Ư CLN a,b=2940:210=14.
Đặt a=14k
b=14p
14.14.k.p=2940
k.p=15.
Lọc các số ra.
Phân tích ra ta thấy:
BCNN a và b nhân WCLN a và b = a nhân b.
=>Ư CLN a,b=2940:210=14.
Đặt a=14k
b=14p
14.14.k.p=2940
k.p=15.
Lọc các số ra.
Tìm 2 số tự nhiên biết :
a) Bội chung nhỏ nhất của chúng là 300 và ước chung là lớn nhất của chúng là 15.
b) Tích của chúng là 2940 và bội chung nhỏ nhất của chúng là 210.
c) Tổng của bội chung nhỏ nhất và ước chung lớn nhất của chúng là 15.
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
Tìm 2 số tự nhiên a và b
Biết tích của chúng là 2940 và biết Bội Chung Nhỏ Nhất là 240
Tìm hai số tự nhiên a và b biết tích của chúng là 2940 và bội của chúng 210
a=210
b=1
Cần lời giải mk cho nhé ''Mình tl đầu tiên nhé ''
gọi số cần tìm là a và b ( giả sử a>b)
ta có : a*b = 2940
mà BCNN của chúng là 210
=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)
=> a là 210 và b là 14
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Ta có : a . b = ƯCLN ( a ; b ) . BCNN ( a ; b )
Mà a . b = 2940 và BCNN ( a ; b ) = 210
⇒⇒ ƯCLN ( a ; b ) = 2940 : 210 = 14
⇒⇒ a = 14m ; b = 14n ( m ; n > 0 )
Thay a = 14m ; b = 14n vào a . b = 2940, ta được :
14m . 14n = 2940
196 . m . n = 2940
m . n = 15
⇒⇒ m ; n ∈ Ư ( 15 ) = { 1 ; 3 ; 5 ; 15 }
+, Với m = 1 ; n = 15 ⇒⇒ a = 14 ; b = 210
+, Với m = 3 ; n = 5 ⇒⇒ a = 42 ; b = 70
+, Với m = 5 ; n = 3 ⇒⇒ a = 70 ; b = 42
+, Với m = 15 ; n = 1 ⇒⇒ a = 210 ; b = 14
Vậy ( a ; b ) ∈ { ( 14 ; 210 ) ; ( 42 ; 70 ) ; ( 70 ; 42 ) ; ( 210 ; 14 ) }
ab = UCLN ( a,b); BCNN ( a,b )
=> UCLN (a,b) = 2940 : 210 = 14
Vậy a = 14m và b = 14n ( m > hoặc = n )
Thay a.b = 2940 ta có:
14m . 14n = 2940
=> m.n = 2940 : ( 14 x 14 ) = 15
Vì m > hoặc = n nên 15 = 5.3 = 15.1
Với m = 5; n = 3 => a = 70 ; b = 42
Với m = 15; n = 1 => a = 210; b = 1
Ta có: \(a.b=ƯCLN\left(a,b\right)\times BCNN\left(a,b\right)\)
Mà \(a.b=2940\) và \(BCNN\left(a,b\right)=210\)
\(\LeftrightarrowƯCLN\left(a,b\right)=2940:210=14\)
\(\Rightarrow a=14m,b=14n\left(m;n>0\right)\)
Thay \(a=14m;b=14n\) vào \(a.b=2940\) ta được:
\(14m.14n=2940\)
\(\Leftrightarrow196.m.n=2940\)
\(\Leftrightarrow m.n=15\)
\(\Leftrightarrow m;n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
\(+\) Với \(m=1;n=15\Rightarrow a=14;b=210\)
\(+\) Với \(m=3;n=5\Rightarrow a=42;b=70\)
\(+\) Với \(m=5;n=3\Rightarrow a=70;b=42\)
\(+\) Với \(m=15;n=1\Rightarrow a=210;b=14\)
Vậy \(\left(a,b\right)\in\left[\left(14;210\right);\left(42;70\right);\left(70;42\right);\left(210;14\right)\right]\)
tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Gọi số cần tìm là a và b ( giả sử a>b)
Ta có : a*b = 2940
Mà BCNN của chúng là 210
=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là :
a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)
Vay a là 210 và b là 14
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Với công thức ab = ƯCLN(a; b).BCNN(a; b)
nên suy ra ƯCLN(a; b) = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n (m ≥ n)
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : (14.14) = 15
Vì m ≥ n nên 15 = 5.3 = 15.1
-Với m = 5 ; n = 3 thì a = 70 ; b = 42
-Với m = 15 ; n = 1 thì a = 210 ; b =1
Tìm 2 số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng là 210
Ta có : \(\overline{ab}=UCLN\left(a,b\right),BCNN\left(a,b\right)\)
\(\Rightarrow UCLN\left(a,b\right)=ab:BCNN\left(a,b\right)\)
\(\Rightarrow UCLN\left(a,b\right)=2940:210=14\)
Ta có : \(a.b=2940\)
Thay số vào, ta có : \(a.b=14.a'.14.b'=\left(14;14\right).a'.b'=2940\)
Ta có :
a' | 1 | 3 | 5 | 15 |
b' | 15 | 5 | 3 | 1 |
\(\Rightarrow\)
a | 14 | 42 | 70 | 210 |
b | 210 | 70 | 42 | 14 |
Vậy các số a, b cần tìm là : 14 và 210; 42 và 70; 70 và 42; 210 và 14