Rút gọn biểu thức
(y-3)(y+3)(y^2+9)-(y^2+2)(y^2-2)
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
Rút gọn biểu thức
\(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=\left[\left(y-3\right)\left(y+3\right)\right]\left(y^2+9\right)-\left[\left(y^2+2\right)\left(y^2-2\right)\right]\)
\(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=\left(y^4-81\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4\)
\(=-81+4\)
\(=-77\)
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Rút gọn biểu thức
a) x(x+4)(x-4)-(x^2+1)(x^2-1)
b) (y-3)(y+3)(y^2+9)-(y^2+2)(y^2-2)
a/ \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-16\right)-x^4+1=-x^4+x^3-16x+1\)
b/ \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-y^4+4=y^4-81-y^2+4=-77\)
rút gọn các biểu thức sau:
a) (x+3).(x^2-3x+9)-(54+x^3)
b)(2x+y).(4x^2-2xy+y^2)-(2x-y).(4x^2+2xy+y^2)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(2x+y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2+4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(8x^2+2y^2\right)\)
\(=\left(2x+y\right)\left(4x+y\right).2xy\)
Bài 1: Rút gọn biểu thức
a, (x+y)^2-(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
Bài 2: Tìm X
a) (2X+1)^2-4(x+2)^2=9
b) 3(x-1)^2-3x(x-5)=21
Bài 3: Cho biểu thức
M=(x-3)^3-(x-1)^3+12x(x-1)
a, Rút gọn M
b, Tính giá trị M tại x= -2/3
c, Tìm x để M=-16
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
rút gọn biểu thức
a,(y+3)(y^2-3y+9)-(60-y^3)
b,(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) Ta có: \(\left(y+3\right)\left(y^2-3y+9\right)-\left(60-y^3\right)\)
\(=y^3+27-60+y^3\)
\(=2y^3-33\)
b) Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
Câu 2: Phân tích đa thức x^2-9 thành nhân tử được kết quả
Câu 3: Rút gọn biểu thức (x+y)^2-(x-y)^2ta được kết quả
\(2,=x^2-3^2=\left(x-3\right)\left(x+3\right)\\ 3,=\left(x+y-x+y\right)\left(x+y+x-y\right)\\ =2y\cdot2x=4xy\)
x^2-9=x^2-3^2=(x+3)(x-3)
(x+y)^2-(x-y)^2=(x+y+x-y)(x+y-x-y)=2x
x2-32=(x-3)(x+3)
(x+y)2-(x-y)2=(x+y-x+y)(x+y+x-y)=2y⋅2x=4xy
Rút gọn biểu thức:
a) (x+y)2- (x-y)^2
b) 2*(x+y)(x-y) + (x+y)^2+(x-y)^2
c) (x+3)(x^2 -3x * 9 )(54 +x^3)
d) (2x+y)(4x^2 - 2xy + y^2 ) - (2x-y)(ax^2 +2xy +y^2 )
a) (x+y+x_y).(x+y_x+y)
b ) (( x + y )+(x _ y))2
d ) 8x3 + y3 _ 8x3 + y3 =2y3