\(\dfrac{1}{8}\) x X = \(\dfrac{1}{5}\)
các pác giúp em vs
Thực hiện phép cộng sau: P= \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}\)
Mọi người giúp em vs ạ! Em cần gấp
Tìm các số nguyên x, y sao cho \(\dfrac{5}{x}+\dfrac{4}{y}=\dfrac{1}{8}\)
giúp e vs, trên mạng hônk có :<<
tìm các số nguyên x , y biết 5\x + 4\y = 1\8 - Hoc24
\(\left\{{}\begin{matrix}\dfrac{1}{x-y}+\dfrac{1}{x+y}\\\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{5}{8}\end{matrix}\right.=\dfrac{3}{8}\)
Giúp mik bài này vs ạ mik cảm mơn
ĐKXĐ: \(x\ne y,x\ne-y\)
\(hpt\Leftrightarrow\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)-\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=\dfrac{5}{8}-\dfrac{3}{8}\)
\(\Leftrightarrow0=\dfrac{1}{4}\left(VLý\right)\)
Vậy hpt vô nghiệm
má bài này lol thắng cx đăng tr :vv
\(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow\left\{{}\begin{matrix}a+b+c=2\\2ab-c^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-a-b\\2ab-\left(2-a-b\right)^2=4\end{matrix}\right.\Leftrightarrow}}\left\{{}\begin{matrix}c=2-a-b\\2ab-4-a^2-b^2+4a+4a-2ab-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-a-b\\\left(a-2\right)^2+\left(b-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=-2\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\z=-\dfrac{1}{2}\end{matrix}\right.\)
(1) giải hpt:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}^{ }\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
giúp mk vs ak
a, ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\)
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\left(tm\right)\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}-\dfrac{2y}{2}=\dfrac{2}{2}\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1-2y=2\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
(1) giải hpt:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
giúp mk vs ạ
a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
\(ĐK:x;y\ne0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )
Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
\(ĐK:x;y\ne0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )
Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
2) \(\dfrac{2x-1}{5-3x}=2\)
3) \(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
4) \(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
mng giúp mk bài này vs. Cảm ơn bạn nhiều
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
giúp mik 3 câu này với
a) \(\dfrac{10}{x+2}\);\(\dfrac{5}{2x-4}\);\(\dfrac{1}{6-3x}\)
b) \(\dfrac{1}{x+2}\);\(\dfrac{8}{2x-x^2}\)
c) \(\dfrac{4x^2-3x+5}{x^3-1}\);\(\dfrac{1-2x}{x^2+x+1}\);-2
Xin cảm ơn vì các bạn đã giúp mình
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
\(8(x+\dfrac{1}{x} )^{2} \)\(+4(x^{2}+\dfrac{1}{x^{2} } )^{2}\)\(-4 (x^{2}+\dfrac{1}{x^{2}} )(x+\dfrac{1}{x})^{2} \)\(=(x+4)^{2}\)
giúp mik vs ạ cho mik cách giải pt này vs ạ
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0
Điều kiện: \(x\ne0\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\\ \Leftrightarrow\left(x+4\right)^2=16\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vì \(x\ne0\) nên \(S=\left\{-8\right\}\)
chỉ mk với các bạn mk đang cần gấp lắm
\(\dfrac{1}{2022}x\dfrac{2}{5}+\dfrac{1}{2022}x\dfrac{7}{5}-\dfrac{1}{2022}x\dfrac{8}{10}\)
cố gắng giải giúp mk nhé các bạn !!!!
\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{2}{5}\) + \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{7}{5}\) - \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{8}{10}\)
= \(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{2}{5}\) + \(\dfrac{7}{5}\) - \(\dfrac{8}{10}\))
= \(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{9}{5}\) - \(\dfrac{4}{5}\))
= \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{5}{5}\)
= \(\dfrac{1}{2022}\times1\)
= \(\dfrac{1}{2022}\)