Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2023 lúc 20:49

loading...  

Nguyễn Thị Huyền
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 10 2021 lúc 13:49

a) ĐKXĐ: \(x>0,x\ne1\)

\(B=1:\dfrac{\left(x+2\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\left(x-1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-\sqrt{x}}\)

\(=\dfrac{\left(x-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b) \(B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}}\)

Áp dụng BĐT Cauchy cho 2 só dương:

\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}.1}{\sqrt{x}}}=2\)

\(\Rightarrow B=1+\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge1+2=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Minh Bình
Xem chi tiết
⭐Hannie⭐
18 tháng 9 2023 lúc 21:16

\(a,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\left(x>0;x\ne6\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x+3\sqrt{x}+\sqrt{x}+3+2\sqrt{x}-4-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\\)

\(=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

`b,` Tớ tính mãi ko ra, xl cậu nha=')

 

 

 

Ly Ly
Xem chi tiết
Lê Thị Thục Hiền
29 tháng 6 2021 lúc 7:54

Đk:\(x>0;x\ne1\)

\(B=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

\(B=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)\(\Leftrightarrow x=9\) (tm)

Vậy..

Lê Thu Dương
29 tháng 6 2021 lúc 7:56

 

a) \(B=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(B=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(B=\dfrac{1}{\sqrt{x}-1}\)

b) Với \(B=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=9\)

Vậy...

Chúc bạn học tốt

Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 7:56

a, \(B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

b, Thay B = 1/2 vào ta được :\(\dfrac{1}{2}=\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=9\)

Vậy ...

 

 

 

Hải Yến Lê
Xem chi tiết
Nguyễn Ngọc Lộc
24 tháng 6 2021 lúc 20:43

Ta có : \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}-1}\right)=\dfrac{1}{\sqrt{x}}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 20:42

B = \(\left[\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}}\)

Yeutoanhoc
24 tháng 6 2021 lúc 20:43

`(sqrtx/(sqrtx+1)-1/(x+sqrtx)).(1/(sqrtx+1)+2/(x-1)(x>0,x ne 1)`

`=((x-1))/(x+sqrtx)).((sqrtx-1+2)/(x-1))`

`=(x-1)/(x+sqrtx)*(sqrtx+1)/(x-1)`

`=(x-1)/(sqrtx(sqrtx+1))*1/(sqrtx-1)`

`=1/sqrtx`

2008
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2023 lúc 20:40

a: \(B=\dfrac{\sqrt{x}+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{x+2\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: B>2A

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}>2\)

=>-căn x+1>0

=>-căn x>-1

=>căn x<1

=>0<x<1

Ahihi
Xem chi tiết
YangSu
25 tháng 5 2023 lúc 16:12

\(a,\) Rút gọn 

\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)

\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)

\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)

\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)

\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)

\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)

\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)

\(=5\)

Vậy \(A=5\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)

\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)

\(=\sqrt{x}-1\)

Vậy \(B=\sqrt{x}-1\)

\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)

\(\Leftrightarrow\sqrt{x}< 6\)

\(\Leftrightarrow x< 36\)

kietdvjjj
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 20:56

a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(=2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}\)

=2

Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 22:36

a) Ta có: \(B=\left(\dfrac{3}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3\sqrt{x}-6-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-8}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b) Để \(B=\dfrac{1}{3}\) thì \(\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}=\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}=2\)

\(\Leftrightarrow x=1\)(thỏa ĐK)

Lê Đình Hiếu
27 tháng 7 2021 lúc 22:47

a) B= \(\left(\dfrac{3\left(\sqrt{x}-2\right)-1\left(\sqrt{x}+2\right)}{x-4}\right):\left(\dfrac{\sqrt{x}-6+1\left(\sqrt{x}-2\right)}{x-2\sqrt{x}}\right)\)

   \(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{2\sqrt{x}-8}\)=\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b) Để B=\(\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2=3\sqrt{x}\Rightarrow x=1\)